
LAB MANUAL OF APPLIED
MATHEMATICS LAB USING

SCILAB

ETMA 252

Maharaja Agrasen Institute of Technology

PSP Area, Plot No. 1, Sector 22, Rohini, Delhi, 110086

MAHARAJA AGRASEN INSTITUTE OF TECHNOLOGY

VISION
To nurture young minds in a learning environment of high academic value and im-

bibe spiritual and ethical values with technological and management competence.

MISSION
The Institute shall endeavor to incorporate the following basic missions in the

teaching methodology:

Engineering Hardware - Software Symbiosis
Practical exercises in all Engineering and Management disciplines shall be carried

out by Hardware equipment as well as the related software enabling deeper un-

derstanding of basic concepts and encouraging inquisitive nature.

Life - Long Learning
The Institute strives to match technological advancements and encourage students

to keep updating their knowledge for enhancing their skills and inculcating their

habit of continuous learning.

Liberalization and Globalization
The Institute endeavors to enhance technical and management skills of students

so that they are intellectually capable and competent professionals with Industrial

Aptitude to face the challenges of globalization.

Diversification
The Engineering, Technology and Management disciplines have diverse fields of

studies with different attributes. The aim is to create a synergy of the above at-

tributes by encouraging analytical thinking.

Digitization of Learning Processes
The Institute provides seamless opportunities for innovative learning in all En-

gineering and Management disciplines through digitization of learning processes

using analysis, synthesis, simulation, graphics, tutorials and related tools to create

a platform for multi-disciplinary approach.

Entrepreneurship
The Institute strives to develop potential Engineers and Managers by enhancing

their skills and research capabilities so that they become successful entrepreneurs

and responsible citizens.

2

MAHARAJA AGRASEN INSTITUTE OF TECHNOLOGY

COMPUTER SCIENCE and ENGINEERING DEPARTMENT

VISION

To inculcate Critical thinkers of Innovative Technology

MISSION

1. To provide an excellent learning environment across the computer science

discipline to inculcate professional behavior, strong ethical values, innovative

research capabilities and leadership abilities which enable them to become

successful entrepreneurs in this globalized world.

2. To nurture an excellent learning environment that helps students to enhance

their problem solving skills and to prepare students to be lifelong learners by

offering a solid theoretical foundation with applied computing experiences

and educating them about their professional, and ethical responsibilities.

3. To establish Industry-Institute Interaction, making students ready for the

industrial environment and be successful in their professional lives.

4. To promote research activities in the emerging areas of technology conver-

gence.

5. To build engineers who can look into technical aspects of an engineering

solution thereby setting a ground for producing successful entrepreneur.

3

Contents

1 Introduction to Scilab 7

1.1 Overview . 8

1.2 Become Familiar With Scilab . 8

1.3 The Menu Bar . 9

1.4 Pre-defined mathematical variables and operators 9

1.5 Booleans . 10

1.6 Complex Numbers . 10

1.7 Strings . 10

1.8 Matrices . 10

1.9 Looping and Branching . 11

1.10 Programming in Scilab . 15

1.10.1 Editor . 15

1.11 Functions . 16

1.12 The Graphic Window . 17

2 Lab Objective and Requirements 18

2.1 Lab Objectives . 19

2.2 Course Outcome: . 19

2.3 Lab Requirements . 19

2.4 List of Experiments as Prescribed by G.G.S.I.P.U 20

2.5 List of Experiments Beyond the Syllabus Prescribed by G.G.S.I.P.U 20

2.6 Format of The Lab Records to be Prepared by the Students 21

2.7 Marking Scheme For The Practical Examination 23

4

3 Matrix Operations 25

3.1 Matrix Addition . 26

3.2 Matrix Multiplication . 30

3.3 Matrix Transpose . 34

3.4 Viva Questions . 37

4 Inverse of a 3× 3 Matrix Using Gauss Jordan Method 38

4.1 Viva Questions . 43

5 Eigen Values and Eigen Vectors of a 2× 2 Matrix 44

5.1 Viva Questions . 48

6 Measures of Central Tendency 49

6.1 Measures of Central Tendency (Ungrouped Data) 50

6.2 Measures of Central Tendency (Grouped Data) 55

6.3 Viva Questions . 58

7 Curve fitting 59

7.1 Fitting a Straight Line . 60

7.2 Fitting a Parabola . 63

7.3 Viva Questions . 66

8 Plotting of 2D Graphs Using Scilab 67

8.0.1 A simple graph plotting raw data 69

8.0.2 Generation of square wave 69

8.0.3 Unit Step function I . 70

8.0.4 Unit Step function II . 71

8.1 Viva Questions . 72

9 Numerical Methods for Finding Roots of Algebraic and Transcen-

dental Equations 73

9.1 Bisection Method . 74

9.2 Newton-Raphson Method . 77

9.3 Viva Questions . 80

5

10 Numerical Integration for Solving Definite Integrals 81

10.1 The Trapezoidal Rule . 82

10.2 Simpson’s 1/3rd Rule . 86

10.3 Simpson’s 3/8th Rule . 90

10.4 Viva Questions . 93

11 Numerical Solution of Ordinary Differential equations using Eu-

ler’s Method 94

11.1 Euler’s Method . 95

11.2 Viva Questions . 98

12 Numerical Solution of Ordinary Differential Equations Using Runge-

Kutta Method 99

12.1 Runge-Kutta method of 4th Order 100

12.2 Viva Questions . 103

6

Chapter 1

Introduction to Scilab

7

Introduction to Scilab

1.1 Overview

Scilab is a programming language associated with a rich collection of numerical

algorithms covering many aspects of scientific computing problems.

From the software point of view, Scilab is an interpreted language. This generally

allows to get faster development processes, because the user directly accesses to a

high level language, with a rich set of features provided by the library. The Scilab

language is meant to be extended so that user-defined data types can be defined

with possibly overloaded operations. Scilab users can develop their own module

so that they can solve their particular problems. The Scilab language allows to

dynamically compile and link other languages such as Fortran and C and in this

way, external libraries can be used as if they were a part of Scilab built-in features.

Scilab is also a numerical computation software that anybody can freely download.

Available under Windows, Linux and Mac OS X, Scilab can be downloaded at the

following address http://www.scilab.org/.

An online help is provided in many local languages.

From a scientific point of view, Scilab comes with many features. At the very

beginning of Scilab, features were focused on linear algebra. But rapidly, the

number of features extended to cover many areas of scientific computing such

as matrices, statistics, Ordinary differential equations, signal processing, interpo-

lation, approximation, linear, quadratic and non linear optimization and many

more.

1.2 Become Familiar With Scilab

The Scilab workspace consists of several windows:

• The console for making calculations

• The editor for writing programs

8

• The graphics windows for displaying graphics

• The embedded help

1.3 The Menu Bar

The following options in menu are particularly useful:

Applications

• The command history allows you to find all the commands from previous

sessions to the current session.

• The variables browser allows you to find all variables previously used during

the current session.

Editing

• Preferences (in Scilab menu under Mac OS X) allow you to set and customize

colors, fonts and font size in the console and in the editor, which is very useful

for screen projection.

• Clicking on Clear Console clears the entire content of the console. In this

case, the command history is still available and calculations made during

the session remain in memory. Commands that have been erased are still

available through the keyboards arrow keys.

1.4 Pre-defined mathematical variables and op-

erators

In Scilab, several mathematical variables are pre-defined variables, which name

begins with a percent % character. The variables which have a mathematical

meaning are summarized in the given table:

9

Also apart from usual operators for summation, subtraction, multiplication

and division, comparison operators are as given:

1.5 Booleans

Boolean variables can store true or false values. In Scilab, true is written with

%t or %T and false is written with %f or %F.

1.6 Complex Numbers

Scilab provides complex numbers, which are stored as pairs of floating point

numbers. The predefined variable %i represents the mathematical imaginary num-

ber i which satisfies i2 = −1.

1.7 Strings

Strings can be stored in variables, provided that they are delimited by double

quotes. The concatenation operation is available from the + operator. They are

many functions which allow to process strings, including regular expressions.

1.8 Matrices

There is a simple and efficient syntax to create a matrix with given values.

The following is the list of symbols used to define a matrix:

• square brackets ”[” and ”]” mark the beginning and the end of the matrix

• commas ”,” separate the values on different columns

• semicolons ”;” separate the values of different rows

10

The following syntax can be used to define an m× n matrix, where blank spaces

are optional (but make the line easier to read) and ”...” are designing intermediate

values: A = [a11, a12, ..., a1n; a21, a22, ..., a2n; ...; am1, am2, ..., amn]

Use of colon operator in matrices

Following table depicts use of colon operator in matrices:

Matrix and usual operators

Following table shows various operator used in matrix operations:

1.9 Looping and Branching

In this section, we describe how to make conditional statements

The if statement

The if uses a boolean variable to perform its choice: if the boolean is true, then

the statement is executed. A condition is closed when the end keyword is met. In

the following script, we display the string ”Hello!” if the condition %t, which is

always true, is satisfied.

if (%t) then

disp (” Hello ! ”)

end

The previous script produces:

Hello !

If the condition is not satisfied, the else statement allows to perform an alternative

11

statement, as in the following script:

if (%f) then

disp (” Hello ! ”)

else

disp (” Goodbye !”)

end

The previous script produces:

Goodbye !

In order to get a boolean, any comparison operator can be used, e.g. ==, >, etc

or any function which returns a boolean. In the following session, we use the ==

operator to display the message ”Hello !”.

i = 2

if (i == 2) then

disp (” Hello ! ”)

else

disp (” Goodbye !”)

end

The select statement

The select statement allows to combine several branches in a clear and simple

way. Depending on the value of a variable, it allows to perform the statement

corresponding to the case keyword. There can be as many branches as required.

In the following script, we want to display a string which corresponds to the given

integer i.

i = 2

select i

case 1

disp (” One ”)

case 2

disp (” Two ”)

case 3

disp (” Three ”)

12

else

disp (” Other ”)

end

The previous script prints out ”‘Two”, as expected. The else branch is used if all

the previous case conditions are false.

The for statement

The for statement allows to perform loops, i.e. to perform a given action several

times. Most of the time, a loop is performed over an integer value, which goes

from a starting to an ending index value. We will see, at the end of this section,

that the for statement is in fact much more general, as it allows to loop through

the values of a matrix. In the following Scilab script, we display the value of i,

from 1 to 3.

for i = 1 : 3

disp (i)

end

The previous script produces the following output.

1.

2.

3.

In the previous example, the loop is performed over a matrix of floating point

numbers containing integer values. Indeed, we used the colon ”:” operator in

order to produce the vector of index values [1, 2, 3]. The following session shows

that the statement 1:3 produces all the required integer values into a row vector.

−− > i = 1 : 3

i = 1.2.3.

The while statement

The while statement allows to perform a loop while a boolean expression is true.

At the beginning of the loop, if the expression is true, the statements in the body

of the loop are executed. When the expression becomes false (an event which must

occur at certain time), the loop is ended. In the following script, we compute the

sum of the numbers i from 1 to 10 with a while statement.

13

s = 0

i = 1

while (i <= 10)

s = s + i

i = i + 1

end

At the end of the algorithm, the values of the variables i and s are:

s = 55 and i = 11.

The break and continue statement

The break statement allows to interrupt a loop. Usually, we use this statement

in loops where, if some condition is satisfied, the loops should not be continued

further. In the following example, we use the break statement in order to compute

the sum of the integers from 1 to 10. When the variable i is greater than 10, the

loop is interrupted.

s = 0

i = 1

while (%t)

if (i > 10) then

break

end

s = s + i

i = i + 1

end

At the end of the algorithm, the values of the variables i and s are:

s = 55 and i = 11

The continue statement allows to go on to the next loop, so that the statements

in the body of the loop are not executed this time. When the continue statement

is executed, Scilab skips the other statements and goes directly to the while or

for statement and evaluates the next loop. In the following example, we compute

the sum s = 1 + 3 + 5 + 7 + 9 = 25. The modulo(i, 2) function returns 0 if the

number i is even. In this situation, the script increments the value of i and use

14

the continue statement to go on to the next loop.

s = 0

i = 1

while (i <= 10)

if (modulo (i, 2) == 0) then

i = i + 1

continue

else

s = s + i

i = i + 1

end

end

If the previous script is executed, the final values of the variables i and s are:

s = 25 and i = 11.

1.10 Programming in Scilab

Scilab is an interpreted language, where the commands in a program are de-

picted exactly as they should be typed in the scilab editor.

Scilab calculates only with numbers. All calculations are done with matrices, al-

though this may go unnoticed. In this section, we present the basic features of

the language showing how to create a real variable, and what elementary mathe-

matical functions can be applied to a real variable. If Scilab provided only these

features, it would only be a super desktop calculator. Fortunately, it is a lot more

and this is the subject of the remaining sections.

1.10.1 Editor

Typing directly into the console has two disadvantages:

• It is not possible to save the commands.

• It is not easy to edit multiple lines of instructions in the console window.

15

The editor is the appropriate tool to run multiple instructions.

Opening the editor:

To open the editor from the console, click on the first icon in the toolbar or

on Applications ′SciNotes′ in the menu bar. The editor opens with a default

file named ′Untitled1′. Writing or typing in the editor is just like as any word

processor.

In the text editor, opening and closing parentheses, end loops, function and test

commands are added automatically.

Saving the program

Any file can be saved by clicking on File > Save as

The extension .sce at the end of a file name will launch automatically Scilab

when opening it (except under Linux and Mac OS X).

Executing the Program

By clicking on Execute in the menu bar, three options are available:

• Execution file with no echo (Ctrl Shift E under Windows and Linux, Cmd

Shift E under Mac OS X): the file is executed without writing the program

in the console (saving the file first is mandatory).

• Execute file with echo (Ctrl L under Windows and Linux, Cmd L under

Mac OS X): rewrite the file into the console and executes it.

• Execute until the caret, with echo (Ctrl E under Windows and Linux,

Cmd E under Mac OS X): rewrite the selection chosen with the mouse into

the console and executes it or execute the file data until the caret position

defined by the user.

1.11 Functions

When several commands are to be executed, it may be more convenient to write

these statements into a file with Scilab editor. These are called as SCRIPT files.

To execute the commands written in such a script file, the exec function can be

used, followed by the name of the script file. These file generally have the extension

.sce or .sci, depending on the content. Files having the .sci extension contain Scilab

16

functions and/or user defined functions and executing them loads the functions

into Scilab environment (but does not execute them),whereas Files having the

.sce extension contains both Scilab functions and executable statements. Please

remember that the convention of naming the extension as .sce and .sci are not

RULES, but a convention followed by the scilab community. The most simple

calling sequence of a function is the following:

outvar = myfunction (invar)

where the following list presents the various variables used in the syntax:

• myfunction is the name of the function

• invar is the name of the input arguments

• outvar is the name of the output arguments

1.12 The Graphic Window

A graphics window opens automatically when making any plot. It is possible

to plot curves, surfaces and also sequences of points on scilab interface.

17

Chapter 2

Lab Objective and Requirements

18

2.1 Lab Objectives

The purpose of this course is to introduce the students with Scilab applications

in Mathematical operations. The students will be able to enhance their analyzing

and problem solving skills and use the same for writing programs in Scilab.

2.2 Course Outcome:

At the end of the course, the students will be able to:

C154.1: write, compile and debug programs in Scilab.

C154.2: use conditional expressions and looping statement to solve problems

associated with conditions and repetitions.

C154.3: implement the programs using arithmetic and relational operators.

C154.4: understand the concept of inbuilt and user defined functions.

C154.5: understand and solve matrices operations effectively.

C154.6: able to choose programming components that efficiently solve com-

puting problems in Mathematics .

2.3 Lab Requirements

Hardware Details :

Intel i3/C2D Processor/2 GB RAM/500GB HDD/MB/LAN Card/ Key Board/

Mouse/CD Drive/15” Color Monitor/ UPS - 33 Nos

LaserJet Printer - 1 No

19

Software Detail :

Operating System: BSDs (e.g., FreeBSD), Linux, macOS, Windows

Open source software: Scilab 5.5.2

2.4 List of Experiments as Prescribed by G.G.S.I.P.U

Paper Code: ETMA 252

Paper: Applied Mathematics Lab

1. Solution of algebraic and transcendental equation.

2. Algebra of matrices: Addition, multiplication, transpose etc.

3. Inverse of a system of linear equations using Gauss-Jordan method.

4. Numerical Integration.

5. Solution of ordinary differential equations using Runge-Kutta Method.

6. Solution of Initial value problem.

7. Calculation of eigen values and eigen vectors of a matrix.

8. Plotting of Unit step function and square wave function.

2.5 List of Experiments Beyond the Syllabus Pre-

scribed by G.G.S.I.P.U

1. Measures of Central Tendency (Ungrouped Data)

2. Measures of Central Tendency (Grouped Data)

3. Curve Fitting (Fitting a Straight Line)

4. Curve Fitting (Fitting a Parabola)

20

2.6 Format of The Lab Records to be Prepared

by the Students

The front page of the lab record prepared by the students should have a cover

page as displayed below.

21

The second page in the record should be the index as displayed below.

INTRODUCTION TO PROGRAMMING PRACTICAL RECORD

PAPER CODE : ETMA 252

Name of the student :

University Roll No. :

Branch :

Section/ Group :

Experiments according to the list provided by GGSIPU and Beyond the syl-

labus

22

2.7 Marking Scheme For The Practical Exami-

nation

There will be two practical exams in each semester

i. Internal Practical Exam

ii. External Practical Exam

INTERNAL PRACTICAL EXAM

It is taken by the respective faculty of the batch

MARKING SCHEME FOR THIS EXAM IS:

Total Marks: 40

Division of 10 marks per practical is as follows:

Each experiment will be evaluated out of 10 marks. At the end of the semester

average of 8 best performed practical will be considered as marks out of 40.

23

EXTERNAL PRACTICAL EXAM

It is taken by the concerned lecturer of the batch and by an external examiner.

In this exam student needs to perform the experiment allotted at the time of the

examination, a sheet will be given to the student in which some details asked by

the examiner needs to be written and at the last viva will be taken by the external

examiner.

MARKING SCHEME FOR THIS EXAM IS:

Total Marks: 60

Division of 60 marks is as follows

a. Sheet filled by the student: 20

b. Viva Voice: 15

c. Experiment performance: 15

d. File submitted: 10

NOTE:

Internal marks + External marks = Total marks given to the students

(40 marks) (60 marks) (100 marks)

Experiments given in exam to be performed can be from any section of the

lab.

24

Chapter 3

Matrix Operations

25

Matrix Operations

3.1 Matrix Addition
• (A + B)i,j = Ai,j + Bi,j

• Order of the matrices must be the same

• Matrix addition is commutative

• Matrix addition is associative

Matrix Addition Algorithm:

1. Start

2. Declare variables and initialize necessary variables

3. Enter the elements of matrices row wise using loops

4. Add the corresponding elements of the matrices using nested loops

5. Print the resultant matrix as console output

6. Stop

26

Flow Chart for Matrix Addition

27

Scilab Code for Matrix Addition

clc

m=input(”enter number of rows in the Matrices: ”);

n=input(”enter number of columns in the Matrices: ”);

disp(’enter the first Matrix’)

for i=1:m

for j=1:n

A(i,j)=input(’\’);

end

end

disp(’enter the second Matrix’)

for i=1:m

for j=1:n

B(i,j)=input(’\’);

end

end

for i=1:m

for j=1:n

C(i,j)=A(i,j)+B(i,j);

end

end

disp(’The first matrix is’)

disp(A)

disp(’The Second matrix is’)

disp(B)

disp(’The sum of the two matrices is’)

disp(C)

28

Matrix Addition using functions

// Save file as addition.sce

clc

function []=addition(m, n, A, B)

C=zeros(m,n);

C=A+B;

disp(’The first matrix is’)

disp (A)

disp(’The Second matrix is’)

disp (B)

disp(’The sum of two matrices is’)

disp (C)

endfunction

29

3.2 Matrix Multiplication

• Am×n ×Bn×p = ABm×p

Where (AB)ij = Ai1B1j + Ai2B2j + . . . + AinBnj

• The number of columns in the first matrix must be equal to the number of

rows in the second matrix

• Matrix multiplication is not commutative

Matrix Multiplication Algorithm:

1. Start

2. Declare variables and initialize necessary variables

3. Enter the elements of matrices row wise using loops

4. Check the number of rows and column of first and second matrices

5. If number of rows of first matrix is equal to the number of columns of second

matrix, go to step 6. Otherwise, print ’Matrices are not conformable for

multiplication’ and go to step 3

6. Multiply the matrices using nested loops

7. Print the product in matrix form as console output

8. Stop

30

Flow Chart for Matrix Multiplication

31

Scilab Code for Matrix Multiplication

clc

m=input(”Enter number of rows in the first Matrix: ”);

n=input(”Enter number of columns in the first Matrix: ”);

p=input(”Enter number of rows in the second Matrix: ”);

q=input(”Enter number of columns in the second Matrix: ”);

if n==p

disp(’Matrices are conformable for multiplication’)

else

disp(’Matrices are not conformable for multiplication’)

break;

end

disp(’enter the first Matrix’)

for i=1:m

for j=1:n

A(i,j)=input(’\’);

end

end

disp(’enter the second Matrix’)

for i=1:p

for j=1:q

B(i,j)=input(’\’);

end

end

C=zeros(m,q);

for i=1:m

for j=1:q

for k=1:n

C(i,j)=C(i,j)+A(i,k)*B(k,j);

end

end

32

end

disp(’The first matrix is’)

disp(A)

disp(’The Second matrix is’)

disp(B)

disp(’The product of the two matrices is’)

disp(C)

Matrix Multiplication using functions

// Save file as multiplication.sce

clc

function [] = multiplication(m, n, p, q, A, B)

C=zeros(m,n);

if n==p

disp(’Matrices are conformable for multiplication’)

else

disp(’Matrices are not conformable for multiplication’)

break;

end

C=A*B

disp(’The first matrix is’)

disp (A)

disp(’The Second matrix is’)

disp (B)

disp(’The multiplication of two matrices is’)

disp (C)

endfunction

33

3.3 Matrix Transpose

• The transpose of an m× n matrix A is n×m matrix AT

• Formed by interchanging rows into columns and vice versa

• (AT)i,j = Aj,i

Matrix Transpose Algorithm:

1. Start

2. Declare variables and initialize necessary variables

3. Enter the elements of matrix by row wise using loop

4. Interchange rows to columns using nested loops

5. Print the transposed matrix as console output

6. Stop

34

Flow Chart for Matrix Transpose

35

Scilab Code for Matrix Transpose

clc

m=input(”Enter number of rows in the Matrix: ”);

n=input(”Enter number of columns in the Matrix: ”);

disp(’Enter the Matrix’)

for i=1:m

for j=1:n

A(i,j)=input(’\’);

end

end

B=zeros(n,m);

for i=1:n

for j=1:m

B(i,j)=A(j,i)

end

end

disp(’Entered matrix is’)

disp(A)

disp(’Transposed matrix is’)

disp(B)

Matrix Transpose using functions
// Save file as transpose.sce

function []=transpose(m, n, A)

B=zeros(m,n);

B=A’

disp(’The matrix is’)

disp (A)

disp(’Transposed matrix is’)

disp (B)

endfunction

36

3.4 Viva Questions

1. What do you mean by an array?

2. What is difference between 1-Dimensional array and 2-Dimensional array?

3. What will be the order of matrix BA formed by multiplication of matrices

A and B of orders 2× 3 and 3× 2 respectively?

4. Define transpose of a matrix ? What will be the order of matrix AT , if the

order of matrix A is 4× 4

5. Can you perform term by term multiplication of matrices A and B of orders

2× 3 each? If yes, how to perform this using Scilab commands?

6. Differentiate between for loop and while loop.

37

Chapter 4

Inverse of a 3 × 3 Matrix Using

Gauss Jordan Method

38

Matrix Inverse

• The inverse of a square matrix A denoted by A−1 is such that AA−1 = I

• Inverse of a square matrix exists if and only if matrix is non singular

Matrix Inverse Algorithm:

1. Start

2. Enter the elements of the 3× 3 matrix row wise using loop

3. Check Det(A). If Det(A) = 0, Print ’Inverse does not exist’ else go to step

4.

4. Make an augmented matrix B = [A, I], where I is unit matrix.

5. Make element B(1, 1) = 1 and using this make B(2, 1) = 0 and B(3, 1) = 0

using row/column transformations.

6. Make element B(2, 2) = 1 and using this make B(1, 2) = 0 and B(3, 2) = 0.

7. Make element B(3, 3) = 1 and using this make B(1, 3) = 0 and B(2, 3) = 0.

8. Thus final augmented matrix is in the form B[I, A−1]. Print A−1

9. Stop

39

Flow Chart for Matrix Inverse

40

Scilab Code for Matrix Inverse using Gauss Jordan Method

clc

disp(’Enter a 3 by 3 matrix row-wise, make sure that diagonal elements are non

-zeros’)

for i=1:3

for j=1:3

A(i,j)=input(’\’);

end

end

disp(’Entered Matrix is’)

disp(A)

if det(A)==0

disp(’Matrix is singular, Inverse does not exist’)

break;

end

//Taking the augmented matrix

B=[A eye(3,3)]

disp(’Augumented matrix is:’)

disp(B)

// Making B(1,1)=1

B(1,:) = B(1,:)/B(1,1);

//Making B(2,1) and B(3,1)=0

B(2,:) = B(2,:) - B(2,1)*B(1,:);

B(3,:) = B(3,:) - B(3,1)*B(1,:);

//Making B(2,2)=1 and B(1,2), B(3,2)=0

B(2,:) = B(2,:)/B(2,2);

B(1,:) = B(1,:) - B(1,2)*B(2,:);

B(3,:) = B(3,:) - B(3,2)*B(2,:);

//Making B(3,3)=1 and B(1,3), B(2,3)=0

B(3,:) = B(3,:)/B(3,3);

B(1,:) = B(1,:) - B(1,3)*B(3,:);

41

B(2,:) = B(2,:) - B(2,3)*B(3,:);

disp(’Augumented matrix after row operations is:’)

disp(B)

B(:,1:3)=[]

disp(’Inverse of the Matrix is’)

disp(B)

Matrix Inverse using functions

// Save file as transpose.sce

function []=inverse(m, A)

C=zeros(m,m);

B=det(A)

if B==0

disp(’Matrix is singular, Inverse does not exist’)

break;

end

C=inv(A)

disp(’The matrix is’)

disp (A)

disp(’Inverse of given matrix is:’)

disp (C)

endfunction

42

4.1 Viva Questions

1. Does the inverse of a rectangular matrix exist? If no, why?

2. What is a singlular matrix? Discuss inverse of a singular matrix exist?

3. Dicusss the algorithm for finding inverse of a 3×3 matrix using Gauss Jorden

method.

4. How would you represent second row of a 3× 3 matrix in scilab?

43

Chapter 5

Eigen Values and Eigen Vectors

of a 2 × 2 Matrix

44

Eigen Values and Eigen Vectors

• Eigenvalues are a special set of scalars associated with a n× n matrix.

• These are roots of the characteristic equation |A−λI = 0|, hence also known

as characteristic roots or latent roots.

• X is a column vector associated with an eigen value λ such that AX = λX

Algorithm to find eigen values and eigen vectors of a 2× 2 matrix

1. Start

2. Enter the elements of the 2× 2 matrix A,row wise using loop

3. Find Trace(A) and Det(A) as the 2 eigen values λ1, λ2 are roots of the char-

acteristic equation λ2 − trace(A) + det(A) = 0

4. Find λ1 and λ2

5. Find corresponding eigen vectors X1 and X2 as follows:

If a1,2 6= 0, calculate X1 and X2 from the first row

If a2,1 6= 0, calculate X1 and X2 from the second row

If a1,2 = 0 and a2,1 = 0,

X1 =

1

0

X2 =

0

1

6. Stop

45

Flow Chart for Eigen Values and Vectors

46

Scilab Code for Eigen Values of a 2× 2 Matrix

disp(’Enter the 2 by 2 Matrix row-wise’)

for i=1:2

for j=1:2

A(i,j)=input(’\’);

end

end

b=A(1,1)+A(2,2);

c=A(1,1)*A(2,2)-A(1,2)*A(2,1);

// characteristic equation is λ2 − trace(A) + det(A) = 0, here λ1 ≡ e1, λ2 ≡ e2

e1 = (b + sqrt(b∧2− 4 ∗ c))/2;

e2 = (b− sqrt(b∧2− 4 ∗ c))/2;

if A(1, 2)=̃0

X1 = [A(1,2); e1-A(1,1)];

X2 = [A(1,2); e2-A(1,1)];

elseif A(2, 1)=̃0

X1 = [e1-A(2,2); A(2,1)];

X2 = [e2-A(2,2); A(2,1)];

else

X1 = [1; 0];

X2 = [0; 1];

end

disp(’First Eigen value is:’);

disp(e1)

disp(’First Eigen vector is:’);

disp (X1)

disp(’Second Eigen value is:’);

disp(e2)

disp(’Second Eigen vector is:’);

disp (X2)

47

5.1 Viva Questions

1. What are characteristic roots and characteristic equation of a matrix?

2. Discuss eigen values and eigen vectors of matrices? How many eigen values

exist for a 3× 2 matrix?

3. Can a matrix have a zero eigen value? If yes, what kind of matrix it is?. If

A is a matrix with eigen values 1, 2, 3, then What would be the eigen values

of matrices A2 ,AT and 5A?

4. Discuss the algorithm for finding eigen values and vectors for a 2×2 matrix.

48

Chapter 6

Measures of Central Tendency

49

6.1 Measures of Central Tendency (Ungrouped

Data)

• Arithmetic mean or average is the sum of a collection of numbers divided

by the number of observations, Mean(x) =
∑

x
n

• The median is the middle score for a set of the data that has been arranged

in ascending or descending order of magnitude.

If n is odd, Median = Value of (n+1)th

2
observation

If n is even, Median = Average value of n
2

th and (n
2

+ 1)th observations

• The mode of a set of data is that value which appears most frequently in

the set.

• The rth moment about any point a of a distribution is denoted by µ‘
r and is

given by µ‘
r = 1

n

∑
(xi − a)r, where n is the number of observations

In particular rth moment about mean x is given by µr = 1
n

∑
(xi − x)r

• µ0 = 1, µ1 = 0, µ2 = σ2= variance

• Skewness denotes the opposite of symmetry

β1 =
µ2

3

µ3
2

β2 = µ4

µ2
2

Algorithm to find mean, median, mode and moments of ungrouped data

1. Start

2. Arrange the data in ascending order

3. Find number of observations (n)

4. Evaluate Mean = sum of observations
n

50

5. Compute Median = Value of (n+1)th

2
observation, if n is odd,

= Average value of n
2

th and (n
2

+ 1)th observations, if n is even

6. For finding mode of given data:

i Arrange the data in ascending order

ii Find the difference between the adjacent elements

iii Find the indices at which the value is non zero

iv Locate the position where there is largest gap between the non zero indices

v Term at next position gives mode

7. Find rth moment about mean x using µr = 1
N

∑
(xi − x)r

8. Evaluate S.D. =
√

µ2, β1 =
µ2

3

µ3
2
, β2 = µ4

µ2
2

9. Stop

51

Flow Chart for Central Tendencies (Ungrouped Data)

52

//Scilab Code to find mean, mode, median, moments, skewness and kurtosis

of linear data

clc

function []= moments(A)

B=gsort(A);

n = length(B);

meanA = sum(B)/n;

if pmodulo(n,2)==0

medianA =((B(n/2)+B(n/2 +1)))/2;

else medianA = B((n+1)/2);

end

C = diff(B)

//C= diff(B) calculates differences between adjacent elements of B along the first

array dimension whose size exceeds 1:

//If B is a vector of length n, then C = diff(B) returns a vector of length n-1.

The elements of C are the differences between adjacent elements of B.

//C = [B(2)-B(1) B(3)-B(2)....... B(m)-B(m-1)]

D = find(C)

//D = find(C) finds the idices(positions), where value is non zero

E = diff(D)

[m k] = max(E) // maximum ’m’ at kth position

modeA = B(D(k)+1)

printf(’Mean of the given data is : %f \n \n’, meanA);

printf(’Median of the given data is : %f \n \n’, medianA);

printf(’Mode of the given data is : %f \n \n’, modeA);

printf(’First moment about the mean(M1)= %f \n \n’, 0);

for i=1:n

X(i)=A(i)-meanA;

end

M2 = sum(X.*X)/n;

M3 = sum(X.*X.*X)/n;

53

M4 = sum(X.*X.*X.*X)/n;

printf(’Second moment about the mean(M2)= %f \n \n’, M2);

printf(’Third moment about the mean(M3)= %f \n \n’, M3);

printf(’Fourth moment about the mean(M4)= %f \n \n’, M4);

sd= sqrt (M2);

printf(’Standard deviation: %f \n \n’, sd);

Csk= (meanA - modeA)/sd;

printf(’Coefficient of skewness: %f \n \n’, Csk);

Sk= (M3)∧2/(M2)∧3;

printf(’Skewness: %f \n \n’, Sk);

Kur= M4/(M2)∧2;

printf(’Kurtosis: %f \n \n’, Kur);

endfunction

54

6.2 Measures of Central Tendency (Grouped Data)

• Mean =
∑

fixi∑
fi

• The rth moment about any point a of a distribution is denoted by µ‘
r and is

given by µ‘
r = 1

N

∑
fi(xi − a)r, where N =

∑
fi

In particular rth moment about mean x is given by µr = 1
N

∑
fi(xi − x)r

Algorithm to find mean, median, mode and moments of ungrouped data

1. Start

2. Enter the number of observations (n)

3. Input the observations using loop

4. Input frequency of each observation using loop

5. Compute sum of all frequencies
∑

fi

6. Compute
∑

fixi

7. Find mean =
∑

fixi∑
fi

8. Enter how many moments to be calculated (r)

9. Compute r moments about mean in a loop

10. Evaluate S.D. =
√

µ2

11. Print Mean, Moments and Standard Deviation

12. Stop

55

Flow Chart for Central Tendencies(Grouped Data)

56

Scilab code for Mean and Moments of Grouped Data

clc

n=input(’Enter the no. of observations:’);

disp(’Enter the values of xi’);

for i=1:n

x(i)=input(’\’);

end;

disp(’Enter the corresponding frequencies fi:’)

sum=0;

for i=1:n

f(i)=input(’\’);

sum=sum+f(i);

end;

r=input(’How many moments to be calculated:’);

sum1=0

for i=1:n

sum1=sum1+f(i)*x(i);

end

A=sum1/sum; //Calculate the average

printf(’Average=%f \n’,A);

for j=1:r

sum2=0;

for i=1:n y(i)=f(i) ∗ (x(i)− A)∧ j;

sum2=sum2+y(i);

end

M(j)=(sum2/sum); //Calculate the moments

printf(’Moment about mean M(%d)=%f \n’,j,M(j));

end

sd=sqrt(M(2)); //Calculate the standard deviation

printf(’Standard deviation=%f \n’,sd);

57

6.3 Viva Questions

1. What are the most common measures of central tendencies?

2. How would you differentiate grouped and ungrouped data?

3. Why do we calculate median or mode, when mean is the most common

measure of central tendency?

4. Name some measures of dispersion. Which is the most common measure?

5. What does a data with large value of standard deviation interpret? Can

standard deviation have a negative value?

6. Define mean and variance for an ungrouped data. What will be mean and

variance of a linear set 3, 3, 3, 3,3 ? If all the above values are multiplied by

2, what would the new mean and variance be?

7. Define moments associated with a data set. What is the significance of

moments?

58

Chapter 7

Curve fitting

59

7.1 Fitting a Straight Line

Let y = ax + b be the straight line to be fitted to the given set of data points

(x1, y1) , (x2, y2),· · · , (xn, yn), then normal equations are:∑
y = a

∑
x + nb · · · (1)∑

xy = a
∑

x2 + b
∑

x · · · (2)

Algorithm to fit a straight line to given set of data points

1. Start

2. Find number of pairs of data points (n) to be fitted

3. Input the x values and y values.

4. Find
∑

x ,
∑

y,
∑

x2 and
∑

xy

5. Solve the system of equations given by (1) and (2) using matrix method,

where

A =

 ∑
x n∑
x2

∑
x

B =

 ∑
y∑
xy

C =

a

b

C = A−1B

6. Required line of best fit is y = ax + b

7. Stop

60

Flow Chart for fitting a straight line to given set of data points

61

//Scilab Code for fitting a straight line to given set of data points (x,y)

clc;

n =input(’Enter the no. of pairs of values (x,y):’)

disp(’Enter the values of x:’)

for i=1:n

x(i)=input(’ ’)

end

disp(’Enter the corresponding values of y:’)

for i=1:n

y(i)=input(’ ’)

end

sumx=0; sumx2=0; sumy=0; sumxy=0

for i=1:n

sumx=sumx+x(i);

sumx2=sumx2+x(i)*x(i);

sumy=sumy+y(i);

sumxy=sumxy+x(i)*y(i);

end

A=[sumx n; sumx2 sumx];

B=[sumy;sumxy];

C=inv(A)*B

printf(’The line of best fit is y =(%g)x+(%g)’,C(1,1),C(2,1))

62

7.2 Fitting a Parabola
Let y = ax2 +bx+c be the parabola to be fitted to the given set of data points

(x1, y1) , (x2, y2),· · · , (xn, yn), then normal equations are:∑
y = a

∑
x2 + b

∑
x + nc · · · (1)∑

xy = a
∑

x3 + b
∑

x2 + c
∑

x · · · (2)∑
x2y = a

∑
x4 + b

∑
x3 + c

∑
x2 · · · (3)

Algorithm to fit a parabola to given set of data points

1. Start

2. Find number of pairs of data points (n) to be fitted

3. Input the x values and y values.

4. Find
∑

x ,
∑

y,
∑

x2,
∑

x3,
∑

x4,
∑

xy and
∑

x2y

5. Solve the system of equations given by (1), (2) and (3) using matrix method,

where

A =

∑

x2
∑

x n∑
x3

∑
x2

∑
x∑

x4
∑

x3
∑

x2

B =

∑

y∑
xy∑
x2y

C =

a

b

c

C = A−1B

6. Required parabola to be fitted is y = ax2 + bx + c

7. Stop

63

Flow Chart for fitting a parabola to the given set of data points

64

//Scilab Code for fitting a parabola line to given set of data points (x,y)

clc;

n =input(’Enter the no. of pairs of values (x,y):’)

disp(’Enter the values of x:’)

for i=1:n

x(i)=input(’ ’)

end

disp(’Enter the corresponding values of y:’)

for i=1:n

y(i)=input(’ ’)

end

sumx=0; sumx2=0; sumx3=0; sumx4=0; sumy=0; sumxy=0; sumx2y=0;

for i=1:n

sumx=sumx+x(i);

sumx2=sumx2+x(i)*x(i);

sumx3=sumx3+x(i)*x(i)*x(i);

sumx4=sumx4+x(i)*x(i)*x(i)*x(i);

sumy=sumy+y(i);

sumxy=sumxy+x(i)*y(i);

sumx2y=sumx2y+x(i)*x(i)*y(i);

end

A=[sumx2 sumx n; sumx3 sumx2 sumx; sumx4 sumx3 sumx2];

B=[sumy;sumxy;sumx2y];

C=inv(A)*B

printf(’The fitted parabola is y=(%g)xˆ 2+(%g)x+(%g)’,C(1,1),C(2,1),C(3,1))

65

7.3 Viva Questions

1. Define curve fitting.

2. Define the principle of least squares in terms of curve fitting.

3. What are the minimum number of points required to fit a curve?

4. Can we fit a straight line and parabola for same set of points?

5. How many normal equations are required for fitting a straight line and

parabola respectively?

6. Define mean and variance for an ungrouped data. What will be mean and

variance of a linear set 3, 3, 3, 3,3 ? If all the above values are multiplied by

2, what would the new mean and variance be?

7. Define moments associated with a data set. What is the significance of

moments?

66

Chapter 8

Plotting of 2D Graphs Using

Scilab

67

Two Dimensional Graphs

The generic 2D multiple plot is

plot2di(x,y,<options>)

index of plot2d : i = none,2, 3, 4

For the different values of i we have:

i =none : piecewise linear/logarithmic plotting

i = 2 : piecewise constant drawing style

i = 3 : vertical bars

i = 4 : arrows style

//Specifier Color

//r Red

//g Green

//b Blue

//c Cyan

//m Magenta

//y Yellow

//k Black

//w White

//Specifier Marker Type

//+ + + Plus sign

//◦ ◦ ◦ Circle

//∗ ∗ ∗ Asterisk

//· · · Point

//××× Cross

//’square’ or ’s’ Square

//’diamond’ or ’d’ Diamond

//∧ Upward-pointing triangle

//∨ Downward-pointing triangle

//’pentagram’ or ’p’ Five-pointed star (pentagram)

68

8.0.1 A simple graph plotting raw data

clc

x = [1 -1 2 3 4 -2];

y = [2 0 3 -2 5 -3];

plot2d(x,y)

xlabel(’x’);

ylabel(’y’);

8.0.2 Generation of square wave

clc

x = [1 2 3 4 5 6 7 8 9 10];

y = [5 0 5 0 5 0 5 0 5 0];

plot2d2(x,y)

xlabel(’x’);

ylabel(’y’);

title(’Square Wave Function’);

69

8.0.3 Unit Step function I

clc

x = [-1 -2 -3 -4 -5 0 1 2 3 4 5];

y = [0 0 0 0 0 1 1 1 1 1 1];

plot(x,y, ’ro’)

xlabel(’x’);

ylabel(’y’);

title(’Unit Step Function’);

70

8.0.4 Unit Step function II

function y=unitstep2(x)

y(find (x < 0)) = 0;

y(find (x >= 0)) = 1;

endfunction

clc

// define your independent values

x = [-4 : 1 : 4]’;

// call your previously defined function

y = unitstep2(x);

// plot

plot(x, y, ’m*’)

xlabel(’x’);

ylabel(’y’);

title(’Unit Step Function’);

71

8.1 Viva Questions

1. What are the differences between plot2d, plot2d1, plot2d2 and plot2d4 com-

mands?

2. How do we provide title to a scilab plot?

3. How to specify line colour in scilab plot?

4. Define Square Wave function?

5. What is a Unit Step function?

72

Chapter 9

Numerical Methods for Finding

Roots of Algebraic and

Transcendental Equations

73

9.1 Bisection Method

Bisection method is used to find an approximate root in an interval by repeat-

edly bisecting into subintervals. It is a very simple and robust method but it is also

relatively slow. Because of this it is often used to obtain a rough approximation

to a solution which is then used as a starting point for more rapidly converging

methods. The method is also called the interval halving method, binary search

method or the dichotomy method. This scheme is based on the intermediate value

theorem for continuous functions.

Let f(x) be a function which is continuous in the interval (a, b). Let f(a) be

positive and f(b) be negative. The initial approximation is x1 = a+b
2

Then to find the next approximation to the root, one of the three conditions arises:

1. f(x1) = 0, then we have a root at x1.

2. f(x1) < 0,then since f(x1)f(a) < 0,the root lies between x1 and a.

3. f(x1) > 0, then since f(x1)f(b) < 0,the root lies between x1 and b.

We can further divide this subinterval into two halves to get a new subinterval

which contains the root. We can continue the process till we get desired accuracy.

Bisection Method Algorithm:

1. Start

2. Read y = f(x) whose root is to be computed.

3. Input a and b where a, b are end points of interval (a, b) in which the root

lies.

4. Compute f(a) and f(b).

5. If f(a) and f(b) have same signs, then display function must have different

signs at a and b, exit. Otherwise go to next step.

6. Input e and set iteration number counter to zero. Here e is the absolute

error i.e. the desired degree of accuracy.

7. root = (a + b)/2

74

8. If f(root) ∗ f(a) > 0, then a = root else b = root

9. Print root and iteration number

10. If |a− b| > 2e, print the root and exit otherwise continue in the loop

11. Stop

Flow Chart for Bisection Method

75

//Scilab Code for Bisection method

clc

deff(′y = f(x)′,′y = x3 + x2 − 3 ∗ x− 3′)

a =input(”enter initial interval value: ”);

b =input(”enter final interval value: ”);

//compute initial values of f(a) and f(b)

fa = f(a);

fb = f(b);

if sign(fa) == sign(fb)

// sanity check: f(a) and f(b) must have different signs

disp(’f must have different signs at the endpoints a and b’)

error

end

e=input(” answer correct upto : ”);

iter=0;

printf(’Iteration \t a \t\t b \t \t root \t \t f(root)\n’)

while abs(a− b) > 2 ∗ e

root = (a + b)/2

printf(’ %i\t\t %f \t %f \t %f \t %f \n’ ,iter,a,b,root,f(root))

iff (root) ∗ f(a) > 0

a = root

else

b = root

end

iter=iter+1

end

printf(’\n \n The solution of given equation is %f after %i Iterations’,root,iter−1)

76

9.2 Newton-Raphson Method

Newton -Raphson method named after Isaac Newton and Joseph Raphson, is a

method for finding successively better approximations to the roots of a real-valued

function. The Newton-Raphson method in one variable is implemented as follows:

Let x0 be an approximate root of the equation f(x) = 0. Next approximation x1

is given by x1 = x0 − f(x0)
f ′(x0)

and nth approximation x1 is given by xn+1 = xn − f(xn)
f ‘(xn)

Newton Raphson Method Algorithm:

1. Start

2. Enter the function f(x) and its first derivative f(x)

3. Take an initial guess root say x1 and error precision e.

4. Use Newtons iteration formula to get new better approximate of the root,

say x2. Repeat the process for x3, x4till the actual root of the function

is obtained, fulfilling the tolerance of error.

77

78

Scilab code for Newton Raphson Method

clc

deff(’y = f(x)’,’y = x3 + x2 − 3 ∗ x− 3’)

deff(’y = df(x)’,’y = 3 ∗ x2 + 2 ∗ x− 3’)

x(1)=input(’Enter Initial Guess:’);

e= input(” answer correct upto : ”);

for i = 1 : 100

x(i + 1) = x(i)− f(x(i))/df(x(i));

err(i) = abs((x(i + 1)− x(i))/x(i));

if err(i) < e

break;

end

end

printf(’the solution is %f’,x(i))

79

9.3 Viva Questions

1. Why do we numerical iterative methods for solving equations? Which are

better : Direct or iterative?

2. What do you mean by root of an equation? How many real roots an equation

may have between a and b, if f(a) and f(b) are having same signs?

3. What are algebraic and transcendental equations? Name some numerical

methods for solving these equations.

4. If an equation has three real roots, can we interpret how many times it will

intersect X and Y axis?

5. State giving reasons which of the Bisection method and Newton Raphson

methods converges faster.

6. Why Newton Raphson method is more useful when the graph of f(x) is

nearly vertical while crossing X - axis? What is the initial approximation

x0 in Newton Raphson method in a given interval (a,b)?

7. What is order of convergence for Newton Raphson method? Does NR

method always converge? What are the limitations of Newton Raphson

method?

80

Chapter 10

Numerical Integration for Solving

Definite Integrals

Numerical integration is the approximate computation of an integral using nu-

merical techniques. The numerical computation of an integral is sometimes called

quadrature. There are a wide range of methods available for numerical integration.

81

10.1 The Trapezoidal Rule

Numerical Integration by Trapezoidal Rule Algorithm:

1. Start

2. Define and Declare function y = f(x) whose integral is to be computed.

3. Input a, b and n, where a, b are lower and upper limits of integral
b∫

a

f(x)dx

and n is number of trapezoids in which area is to be divided.

4. Initialize two counters sum1 and sum2 to zero.

5. Compute x(i) = a + i ∗ h and y(i) = f(x(i)) in a loop for all n + 1 points

dividing n trapezoids.

82

6. sum1 = y(1) + y(n) and sum2 = y(2) + . . . + y(n− 1)

7. val = h
2
(sum1 + 2sum2)

8. Print value of integral.

9. Stop

Flow Chart for Trapezoidal Rule

83

// Scilab code for Trapezoidal Rule

clc

deff(’y = f(x)′,′ y = x/(x2 + 5)’);

a=input(”Enter Lower Limit: ”)

b=input(”Enter Upper Limit: ”)

n=input(”Enter number of sum intervals: ”)

h = (b− a)/n

sum1 = 0

sum2 = 0

for i = 0 : n

x = a + i ∗ h

y = f(x)

disp([xy])

if (i == 0)|(i == n)

sum1 = sum1 + y

else

sum2 = sum2 + y

end

end

val = (h/2) ∗ (sum1 + 2 ∗ sum2)

disp(val,”Value of integral by Trapezoidal Rule is:”)

84

10.2 Simpson’s 1/3rd Rule

The Simpson’s 1/3rd rule is similar to the trapezoidal rule, though it approxi-

mates the area using a series of quadratic functions instead of straight lines. It is

used if the number of segments is even.

Numerical Integration by Simpson’s 1/3rd Rule Algorithm:

1. Start

2. Define and Declare function y = f(x) whose integral is to be computed.

3. Input a, b and n, where a, b are lower and upper limits of integral
b∫

a

f(x)dx

and n is number of intervals in which area is to be divided. Note that n

must be even.

4. Put x1 = a and initialize sum = f(a)

5. Compute x(i) = x(i− 1) + h

85

6. sum = sum + 4[f(x2) + f(x4) + + f(xn))

7. sum = sum + 2[f(x3) + f(x5) + + f(xn−1))

8. sum = sum + f(b)

9. val = h
3
(sum)

10. Print value of integral.

11. Stop

Flow Chart for Simpson’s 1/3rd Rule

86

// Scilab Code for Simpsons 1/3rd Rule

clc

deff(’y = f(x)′,′ y = x/(x2 + 5)’);

a=input(”Enter Lower Limit: ”)

b=input(”Enter Upper Limit: ”)

n=input(”Enter number of sum intervals: ”)

h = (b− a)/n

x(1) = a;

sum = f(a);

for i = 2 : n

x(i) = x(i− 1) + h;

end

for j = 2 : 2 : n

sum = sum + 4 ∗ f(x(j));

end

for k = 3 : 2 : n

sum = sum + 2 ∗ f(x(k)); end

sum = sum + f(b);

val = sum ∗ h/3;

disp(val,”Value of integral by Simpsons 1/3rd Rule is:”)

87

10.3 Simpson’s 3/8th Rule

The Simpson’s 3/8th Rule rule is similar to the 1/3 rule. It is used when it

is required to take 3 segments at a time. Thus number of intervals must be a

multiple of 3.
b∫

a

f(x)dx = 3h
8

[f(x0)+3f(x1)+3f(x2)+2f(x3)+3f(x4)+3f(x5)+2f(x6)+ . . .+

f(xn)]

Numerical Integration by Simpson’s 3/8th Rule Algorithm:

1. Start

2. Define and Declare function y = f(x) whose integral is to be computed.

3. Input a, b and n, where a, b are lower and upper limits of integral
b∫

a

f(x)dx

and n is number of intervals in which area is to be divided. Note that n

must be a multiple of 3.

4. Put x1 = a and initialize sum = f(a)

5. Compute x(i) = x(i− 1) + h

6. sum = sum + 3[f(x2) + f(x5) +]

88

7. sum = sum + 3[f(x3) + f(x6) +])

8. sum = sum + 2[f(x4) + f(x7) +]

9. sum = sum + f(b)

10. val = 3h
8

(sum)

11. Print value of integral.

12. Stop

Flow Chart for Simpson’s 3/8th Rule

89

Scilab Code for Simpson’s 3/8th Rule

clc

deff(’y = f(x)′,′ y = x/(x2 + 5)’);

a=input(”Enter Lower Limit: ”)

b=input(”Enter Upper Limit: ”)

n=input(”Enter number of sum intervals: ”)

h = (b− a)/n

x(1) = a;

sum = f(a);

for i = 2 : n

x(i) = x(i− 1) + h;

end

for j = 2 : 3 : n

sum = sum + 3 ∗ f(x(j));

end

for k = 3 : 3 : n

sum = sum + 3 ∗ f(x(k));

end

for l = 4 : 3 : n

sum = sum + 2 ∗ f(x(l));

end

sum = sum + f(b);

val = sum ∗ 3 ∗ h/8;

disp(val,”Value of integral by Simpson’s 3/8th Rule is:”)

90

10.4 Viva Questions

1. What is numerical integration? Is numerical integration valid for indefinite

integrals?

2. Explain geometrical significance of Trapozoidal rule.

3. Is Simpson’s Method always better than Trapezoidal? Which one is more

reliable?

4. What is the condition on number of intervals for Trapezoidal, Simpson’s one

third and Simpson’s three eight rule? Raphson method?

5. What is The highest order of polynomial integrand for which Simpson’s one

third rule of integration is exact?

91

Chapter 11

Numerical Solution of Ordinary

Differential equations using

Euler’s Method

The problem of finding a function y of x when we know its derivative and its value

y0 at a particular point x0 is called an initial value problem.

92

11.1 Euler’s Method

Euler’s Method provides us with an approximation for the solution of a dif-

ferential equation of the form dy
dx

= f(x, y) , y(x0) = y0. The idea behind Euler’s

Method is to use the concept of local linearity to join multiple small line segments

so that they make up an approximation of the actual curve, as shown below.

The upper curve shows the actual graph of a function. The curve Ã0 A5

give approximations using Euler’s method. Generally, the approximation gets

less accurate the further we go away from the initial value. Better accuracy is

achieved when the points in the approximation are chosen in small steps . Each

next approximation is estimated from previous by using the formula yn+1 = yn +

hf(xn, yn)

Algorithm to solve an initial value problem using Euler’s method:

1. Start

2. Define and Declare function ydot representing dy
dx

= f(x, y)

3. Input x0, y0 , h and xn for the given initial value condition y(x0) = y0. h is

93

step size and xn is final value of x.

4. For x = x0 to xn solve the D.E. in steps of h using inbuilt function ode.

5. Print values of x0 to xn and y0 to yn

6. Plot graph in (x, y)

7. Stop

Flow Chart for Euler’s Method

94

Scilab Code for Solving Initial Value Problem using Euler’s Method

// Solution of Initial value problem dy
dx

= 2− 2y− e−4x, y(0) = 1, h = .1, xn = 1

// If f is a Scilab function, its calling sequence must be ydot = f(x, y)

// ydot is used for first order derivative dy
dx

// ode is scilab inbuilt function to evaluate the D.E. in the given format

clc

function ydot = euler(x, y)

ydot= 2− 2 ∗ y −%e∧(−4 ∗ x)

endfunction

x0=input(”Enter initial value x0: ”)

y0=input(”Enter initial value y0: ”)

h=input(”Enter step size h: ”)

xn=input(”Enter final value xn: ”)

x = x0 : h : xn;

y=ode(y0, x0, x, euler)

disp(x,” x value:”)

disp(y,” y value:”)

plot (x, y)

95

11.2 Viva Questions

1. What is an inial value problem?

2. Which kind of differential equations can be solved using Euler’s method?

3. Can we solve second order differentisl equation using Euler’s method?

4. Explain geometrical significane of Euler’s method.

96

Chapter 12

Numerical Solution of Ordinary

Differential Equations Using

Runge-Kutta Method

The problem of finding a function y of x when we know its derivative and its value

y0 at a particular point x0 is called an initial value problem.

97

12.1 Runge-Kutta method of 4th Order

Eulers method is simple but not an appropriate method for integrating an

ODE as the derivative at the starting point of each interval is extrapolated to find

the next function value. The method has first-order accuracy.

In Fourth-order Runge-Kutta method, at each step the derivative is evaluated

four times; once at the initial point; twice at trial midpoints; and once at a trial

endpoint. The final function value is calculated from these derivatives as given

below.

Algorithm for solving initial value problem using RUNGE KUTTA

METHOD :

1. Start

2. Define and Declare function ydot representing dy
dx

= f(x, y)

3. Initialize values of x and y and input h, the step size.

4. Calculate 2 sets (i= 1,2) of values for k1, k2, k3 and k4 and subsequently

value of k = 1
6
[k1 + 2k2 + 2k3 + k4].

5. Finally yi+1 = yi + k

6. Print values of xi and yi.

98

7. Stop

Flow Chart for Runge Kutta Method

99

// Scilab Code for Runge Kutta Method

clc

function ydot = f(x, y)

ydot = x + y∧2

endfunction

x1 = 0;

y1 = 1;

h=input(”Enter step size h: ”)

x(1) = x1;

y(1) = y1;

for i = 1 : 2

k1 = h ∗ f(x(i), y(i));

k2 = h ∗ f(x(i) + 0.5 ∗ h, y(i) + 0.5 ∗ k1);

k3 = h ∗ f((x(i) + 0.5 ∗ h), (y(i) + 0.5 ∗ k2));

k4 = h ∗ f((x(i) + h), (y(i) + k3));

k = (1/6) ∗ (k1 + 2 ∗ k2 + 2 ∗ k3 + k4);

y(i + 1) = y(i) + k;

printf(’\n The value of y at x=%f is %f ’,i ∗ h, y(i + 1))

x(i + 1) = x(1) + i ∗ h;

end

100

12.2 Viva Questions

1. Which gives more accurate results Euler’s method or Runge Kutta Method

of fourth order?

2. Which kind of differential equations can be solved using Runge Kutta method?

3. Can we solve second order differentisl equation using Runge Kutta method?

4. Is there any connection between Euler’s method and Runge Kutta Method?

Explain

101

