
Chapter 9 

Numerical Solutions  

of  

Ordinary Differential Equations 

9.1 Introduction 

An ordinary differential equation is a mathematical equation that relates one or 

more functions of an independent variable with its derivatives. Differential 

equations are of extreme importance to scientists and engineers as they are 

inevitable tools for mathematical modeling of any problem involving rate of 

change. Sometimes, we encounter situations where these equations are not 

amenable to analytic solutions. They can either be solved using mathematical 

software or by using numerical techniques discussed in coming sections.  

Many practical applications lead to second or higher order systems of ordinary 

differential equations, numerical methods for higher order initial value problems 

are entirely based on their reformulation as first order systems. Numerical 

solutions of ordinary differential equations require initial values as they are based 

on finite-dimensional approximations. In this chapter, we shall restrict our 

discussion to numerical methods for solving initial value problems of first-order 

ordinary differential equations.  

The first-order differential equation and the given initial value constitute a first-

order initial value problem given as:   
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) ;  𝑦 𝑥0 = 𝑦0, whose numerical 

solution may be given using any of the following methodologies:    

(a) Taylor series method      

(b) Picard’s method 

(c) Euler's method 

(d) Modified Euler’s method 

(e) Runge-Kutta method 

(f) Milne’s Predictor corrector method 

(g) Adams-Bashforth method 

All these methods will be discussed in detail in coming sections. 

9.2 Taylor Series Method 

Taylor’s series expansion of a function 𝑦 𝑥  about 𝑥 = 𝑥0 is given by 

𝑦 𝑥 = 𝑦0 +  𝑥 − 𝑥0 𝑦0
′ +

1

2!
 𝑥 − 𝑥0 

2𝑦0
′′ +

1

3!
 𝑥 − 𝑥0 

3𝑦0
′′′ + ⋯       ⋯①  

To approximate 𝑦 𝑥  numerically for the initial value problem given by 



  
 𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) ;   𝑦 𝑥0 = 𝑦0 , we substitute  the values of  𝑦0  and its successive 

derivatives in Taylor’s series given by ①. Working methodology is illustrated in 

the examples given below. 

Example1 Solve the differential equation   
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦  ;  𝑦 0 = 1 , at  𝑥 = 0.2  , 

0.4 correct to 3 decimal places, using Taylor’s series method. Also compare the 

numerical solution obtained with the analytic solution. 

Solution: Taylor’s series expansion of  𝑦(𝑥) about 𝑥 = 0  is given by: 

𝑦 𝑥 = 𝑦0 +  𝑥 − 0 𝑦0
′ +

1

2!
 𝑥 − 0 2𝑦0

′′ +
1

3!
 𝑥 − 0 3𝑦0

′′′ +
1

4!
 𝑥 − 0 4𝑦0

𝑖𝑣 + ⋯                 

                                                                                                                         ⋯① 

                Given    
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦   ;      𝑦0 = 1                          

                       or    𝑦′ = 𝑥 + 𝑦   ;      𝑦0
′  = 1  

                       ⇒   𝑦′′ = 1 + 𝑦′  ;       𝑦0
′′ = 2 

                              𝑦′′′ = 𝑦′′       ;      𝑦0
′′′ = 2 

                              𝑦𝑖𝑣 = 𝑦′′′      ;      𝑦0
𝑖𝑣 = 2   

                               ⋮  

         Substituting these values in ①, we get 

             𝑦 𝑥 = 1 + 𝑥(1) +
1

2!
𝑥2(2) +

1

3!
𝑥3(2) +

1

4!
𝑥4(2) + ⋯  

    Or     𝑦 𝑥 = 1 + 𝑥 + 𝑥2 +
𝑥3

3
+

𝑥4

12
+ ⋯   

 𝑖.   𝑦 0.2 = 1 + 0.2 + 0.04 +
0.008

3
+

0.0016

12
+ ⋯ 

                  = 1 + 0.2 + 0.04 + 0.002667 + 0.00013 + ⋯  

The fifth term in this series is 0.00013 < 0.0005  

Hence value of 𝑦 0.2  correct to 3 decimal places may be obtained by adding first 

four terms. 

  ∴ 𝑦 0.2 ≈ 1.24280 ≈ 1.243 

𝑖𝑖.    𝑦 0.4 = 1 + 0.4 + 0.16 +
0.064

3
+

0.0256

12
+

0.01024

60
+ ⋯ 

                   = 1 + 0.4 + 0.16 + 0.02133 + 0.00213 + 0.00017 + ⋯  

The sixth term in this series is 0.00017 < 0.0005  

Hence value of 𝑦 0.4  correct to 3 decimal places may be obtained by adding first 

five terms.  ∴ 𝑦 0.4 ≈ 1.58346 ≈ 1.583 correct to three decimal places. 

Again to find exact solution of  
𝑑𝑦

𝑑𝑥
− 𝑦 = 𝑥, which is a linear differential equation 

Integrating Factor (I.F.) = 𝑒 −𝑑𝑥 = 𝑒−𝑥  

Solution is given by  𝑦𝑒−𝑥 =  𝑥𝑒−𝑥𝑑𝑥 

                            ⇒   𝑦𝑒−𝑥 = −𝑥𝑒−𝑥 − 𝑒−𝑥 + 𝑐 

                            ⇒    𝑦 = −𝑥 − 1 + 𝑐𝑒𝑥   

Given that 𝑦 0 = 1    ⇒ 1 = 0 − 1 + 𝑐      ∴ 𝑐 = 2 

 ⇒ 𝑦 = −𝑥 − 1 + 2𝑒𝑥   



𝑦 0.2 ≈ 1.243 and 𝑦 0.4 ≈ 1.584  correct to three decimal places 

Example2 Solve the differential equation 
𝑑𝑦

𝑑𝑥
= 4𝑦 ;  0 = 1 , at 𝑥 = 0.1 using 

Taylor’s series method correct to three decimal places.  

Solution:  Taylor’s series of  𝑦(𝑥)  about 𝑥 = 0, is given by 

𝑦 𝑥 = 𝑦0 +  𝑥 − 0 𝑦0
′ +

1

2!
 𝑥 − 0 2𝑦0

′′ +
1

3!
 𝑥 − 0 3𝑦0

′′′ +
1

4!
 𝑥 − 0 4𝑦0

𝑖𝑣 + ⋯                 

                                                                                                                         ⋯① 

                Given    
𝑑𝑦

𝑑𝑥
 = 4𝑦         ;     𝑦0 = 1                          

                       or    𝑦′  = 4𝑦         ;     𝑦0
′ = 4  

                       ⇒   𝑦′′  = 4𝑦′         ;    𝑦0
′′ = 16 

                              𝑦′′′ = 4𝑦′′       ;   𝑦0
′′′ = 64 

                              𝑦𝑖𝑣  = 4𝑦′′′      ;   𝑦0
𝑖𝑣 = 256   

         Substituting these values in ①, we get 

𝑦 𝑥 = 1 + 𝑥(4) +
1

2!
𝑥2(16) +

1

3!
𝑥3(64) +

1

4!
𝑥4(256) + ⋯  

or  𝑦 𝑥 = 1 + 4𝑥 +
16𝑥2

2!
+

64𝑥3

3!
+

256𝑥4

4!
+

256𝑥4

5!
…   

⇒   𝑦 𝑥 = 1 + 4𝑥 + 8𝑥2 +
32

3
𝑥3 +

32

3
𝑥4 + ⋯  

     𝑦 0.1 = 1 + 4 0.1 + 8 0.1 2 +
32

3
 0.1 3 +

32

3
 0.1 4 +

128

15
 0.1 5 … 

⇒  𝑦 0.1 = 1 + 0.4 + 0.08 + 0.01067 + 0.00107 + 0.00009  

𝑦 0.1 ≈ 1.49183 ≈ 1.492 correct to three decimal places 

Again to find analytical solution of  
𝑑𝑦

𝑑𝑥
= 4𝑦 ⇒

𝑑𝑦

𝑦
= 4𝑑𝑥       

This is a variable separable equation, whose solution is given by:  

 log 𝑦 = 4𝑥 + log 𝑐 

 ⇒   𝑦 = 𝑐𝑒4𝑥   

 Given that 𝑦 0 = 1          ∴ 𝑐 = 1 

 ⇒ 𝑦 = 𝑒4𝑥   

𝑦 0.1 ≈ 1.491824 ≈ 1.492  correct to three decimal places 

Example3 Using Taylor’s series method, solve the differential equation 

  
𝑑𝑦

𝑑𝑥
= 𝑦 + 3𝑒𝑥  ;  0 = 1 , at 𝑥 = 0.2  

Also compare the result with the exact solution. 

Solution: Taylor’s series expansion of  𝑦(𝑥) about 𝑥 = 0  is given by: 

𝑦 𝑥 = 𝑦0 +  𝑥 − 0 𝑦0
′ +

1

2!
 𝑥 − 0 2𝑦0

′′ +
1

3!
 𝑥 − 0 3𝑦0

′′′ +
1

4!
 𝑥 − 0 4𝑦0

𝑖𝑣 + ⋯                 

                                                                                                                         ⋯① 

                Given    
𝑑𝑦

𝑑𝑥
= 𝑦 + 3𝑒𝑥         ;             𝑦0 = 1                          

                       or    𝑦′ = 𝑦 + 3𝑒𝑥        ;             𝑦0
′  = 4  

                       ⇒   𝑦′′ = 𝑦′ + 3𝑒𝑥       ;             𝑦0
′′ = 7 

                              𝑦′′′ = 𝑦′′ + 3𝑒𝑥    ;             𝑦0
′′′ = 10 

                              𝑦𝑖𝑣 =  𝑦′′′ + 3𝑒𝑥   ;             𝑦0
𝑖𝑣 = 13   



                              𝑦𝑣 =  𝑦𝑖𝑣 + 3𝑒𝑥     ;             𝑦0
𝑣 = 16   

                               ⋮  

         Substituting these values in ①, we get 

   𝑦 𝑥 = 1 + 𝑥 4 +
1

2!
𝑥2 7 +

1

3!
𝑥3 10 +

1

4!
𝑥4 13 +

1

5!
𝑥5 16 + ⋯  

    or     𝑦 𝑥 = 1 + 4𝑥 +
7

2
𝑥2 +

5

3
𝑥3 +

13

24
𝑥4 +

2

15
𝑥5 + ⋯   

 𝑖.   𝑦 0.2 = 1 + 4(0.2) +
7

2
(0.2)2 +

5

3
(0.2)3 +

13

24
(0.2)4 +

2

15
(0.2)5 + ⋯   

                  = 1 + 0.8 + 0.14 + 0.01333 + 0.00087 + 0.00004 + ⋯  

The sixth term in this series is 0.00004 < 0.0005  

Hence value of 𝑦 0.2  correct to 3 decimal places may be obtained by adding first 

five terms. 

  ∴ 𝑦 0.2 ≈ 1.9542 ≈ 1.954 

Again to find exact solution of    
𝑑𝑦

𝑑𝑥
− 𝑦 = 3𝑒𝑥 , which is a linear equation 

Integrating Factor (I.F.) = 𝑒 −𝑑𝑥 = 𝑒−𝑥  

Solution is given by  𝑦𝑒−𝑥 = 3 𝑒𝑥𝑒−𝑥𝑑𝑥 

                            ⇒   𝑦𝑒−𝑥 = 3𝑥 + 𝑐 

                            ⇒    𝑦 = (3𝑥 + 𝑐)𝑒𝑥   

Given that 𝑦 0 = 1    ⇒ 𝑐 = 1       

 ⇒ 𝑦 = (3𝑥 + 1)𝑒𝑥  

𝑦 0.2 ≈ 1.954244 ≈ 1.954  correct to three decimal places 

9.3 Picard’s Method of Successive Approximations 

Consider the initial value problem given by  
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) ;   𝑦 𝑥0 = 𝑦0     

 ⇒ 𝑑𝑦 = 𝑓 𝑥, 𝑦 𝑑𝑥 Integrating, we get 

 𝑑𝑦 =  𝑓 𝑥, 𝑦 𝑑𝑥
𝑥

𝑥0

𝑦

𝑦0
  

⇒ 𝑦 − 𝑦0 =  𝑓 𝑥, 𝑦 𝑑𝑥
𝑥

𝑥0
  

⇒ 𝑦 = 𝑦0 +  𝑓 𝑥, 𝑦 𝑑𝑥
𝑥

𝑥0
   

To obtain the first approximation, replacing  𝑦 by 𝑦0 on R.H.S. 

        ⇒      𝑦1 = 𝑦0 +  𝑓 𝑥, 𝑦0 𝑑𝑥
𝑥

𝑥0
  

Similarly 𝑦2 = 𝑦0 +  𝑓 𝑥, 𝑦1 𝑑𝑥
𝑥

𝑥0
 

                 ⋮  

                𝑦𝑛 = 𝑦0 +  𝑓 𝑥, 𝑦𝑛−1 𝑑𝑥
𝑥

𝑥0
   , where 𝑦 𝑥0 = 𝑦0 

Remark: Picard’s method can be applied only to limited types of problems, which 

can be integrated successively.  



Example4 Using Picard’s method, solve the initial value problem 
𝑑𝑦

𝑑𝑥
= 𝑥 + 𝑦 ;      

        𝑦 0 = 1 , upto 3 approximations. 

Solution: Given  𝑓(𝑥, 𝑦) = 𝑥 + 𝑦,      𝑥0 = 0,  𝑦0 = 1 

 Using Picard’s approximation 

                 𝑦 = 𝑦0 +  𝑓 𝑥, 𝑦 𝑑𝑥
𝑥

𝑥0
          

1
st
 approximation: 

                  𝑦1 = 𝑦0 +  𝑓 𝑥, 𝑦0 𝑑𝑥
𝑥

𝑥0
 

            ⇒  𝑦1 = 1 +  (𝑥 + 1)𝑑𝑥
𝑥

0
 

                      = 1 +  
𝑥2

2
+ 𝑥 

𝑥
0

= 1 + 𝑥 +
𝑥2

2
 

2
nd

 approximation: 

                  𝑦2 = 𝑦0 +  𝑓 𝑥, 𝑦1 𝑑𝑥
𝑥

𝑥0
 

            ⇒  𝑦2 = 1 +  (𝑥 + 𝑦1)𝑑𝑥
𝑥

0
 

                       = 1 +   𝑥 +  1 + 𝑥 +
𝑥2

2
  𝑑𝑥

𝑥

0
 

                       = 1 + 𝑥 + 𝑥2 +
𝑥3

6
 

3
rd

 approximation: 

                  𝑦3 = 𝑦0 +  𝑓 𝑥, 𝑦2 𝑑𝑥
𝑥

𝑥0
 

            ⇒  𝑦3 = 1 +  (𝑥 + 𝑦2)𝑑𝑥
𝑥

0
 

                       = 1 +   𝑥 +  1 + 𝑥 + 𝑥2 +
𝑥3

6
  𝑑𝑥

𝑥

0
 

                       = 1 + 𝑥 + 𝑥2 +
𝑥3

3
+

𝑥4

24
 

Example5 Using Picard’s method, obtain the solution of  
𝑑𝑦

𝑑𝑥
= 𝑥(1 + 𝑥3𝑦) ; 

 𝑦 0 = 3 , at 𝑥 = 0.1 . 

Solution: Given  𝑓(𝑥, 𝑦) = 𝑥(1 + 𝑥3𝑦) ,      𝑥0 = 0,  𝑦0 = 3 

 Using Picard’s approximation 

                 𝑦 = 𝑦0 +  𝑓 𝑥, 𝑦 𝑑𝑥
𝑥

𝑥0
          

1
st
 approximation: 

                  𝑦1 = 𝑦0 +  𝑓 𝑥, 𝑦0 𝑑𝑥
𝑥

𝑥0
 

            ⇒  𝑦1 = 3 +  𝑥(1 + 𝑥3𝑦) 𝑑𝑥
𝑥

0
 

                      = 3 +
𝑥2

2
+

3𝑥5

5
 

2
nd

 approximation: 

                  𝑦2 = 𝑦0 +  𝑓 𝑥, 𝑦1 𝑑𝑥
𝑥

𝑥0
 



            ⇒  𝑦2 = 3 +  𝑥  1 + 𝑥3  3 +
𝑥2

2
+

3𝑥5

5
   𝑑𝑥

𝑥

0
 

                      = 3 +
𝑥2

2
+

3𝑥5

5
+

𝑥7

14
+

3𝑥10

50
 

Clearly   𝑦1 and   𝑦2 are coincident upto 3 terms. 

∴ Let 𝑦 = 3 +
𝑥2

2
+

3𝑥5

5
   

Also 𝑦 0.1 = 3 +
 0.1 2

2
+

3 0.1 5

5
= 3.00501 

Example6 Using Picard’s method, solve the initial value problem 
𝑑𝑦

𝑑𝑥
= 𝑥𝑦 ;     

      𝑦 1 = 2 , upto 3 approximations. 

Solution: Given  𝑓(𝑥, 𝑦) = 𝑥𝑦,      𝑥0 = 1,  𝑦0 = 2 

 Using Picard’s approximation 

                 𝑦 = 𝑦0 +  𝑓 𝑥, 𝑦 𝑑𝑥
𝑥

𝑥0
          

1
st
 approximation: 

                  𝑦1 = 𝑦0 +  𝑓 𝑥, 𝑦0 𝑑𝑥
𝑥

𝑥0
 

            ⇒  𝑦1 = 2 +  𝑥(2)𝑑𝑥
𝑥

1
 

                      = 2 +  𝑥2 
𝑥
1

= 1 + 𝑥2 

2
nd

 approximation: 

                  𝑦2 = 𝑦0 +  𝑓 𝑥, 𝑦1 𝑑𝑥
𝑥

𝑥0
 

            ⇒  𝑦2 = 2 +  (𝑥. 𝑦1)𝑑𝑥
𝑥

1
 

                       = 2 +   𝑥(1 + 𝑥2) 𝑑𝑥
𝑥

1
 

                       =
5

4
+

𝑥2

2
+

𝑥4

4
 

3
rd

 approximation: 

                  𝑦3 = 𝑦0 +  𝑓 𝑥, 𝑦2 𝑑𝑥
𝑥

𝑥0
 

            ⇒  𝑦3 = 2 +  (𝑥. 𝑦2)𝑑𝑥
𝑥

1
 

                       = 2 +  𝑥  
5

4
+

𝑥2

2
+

𝑥4

4
 𝑑𝑥

𝑥

1
 

                       =
29

24
+

5𝑥2

8
+

𝑥4

8
+

𝑥6

24
 

9.4 Euler’s Method 

Euler’s Method provides us with a numerical 

solution of the initial value problem 

   
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) ;  𝑦 𝑥0 = 𝑦0 ⋯①, by joining 

multiple small line segments  𝐴0𝐴1  ,  𝐴1𝐴2 , 

 𝐴2𝐴3 ,⋯ , making an approximation of the 

actual curve, as shown in the adjoining 

figure. 



 Thus if   𝑥0, 𝑥1  is the small interval, where  𝑥1 = 𝑥0 + ℎ , we approximate the 

curve by the tangent drawn to curve at point  𝐴0  , having coordinates  𝑥0 , 𝑦0 , 

whose equation is given by 

 𝑦 − 𝑦0 = 𝑚(𝑥 − 𝑥0)  , where  𝑚 is slope of tangent at the point  𝑥0, 𝑦0  

Also 𝑚 =  𝑑𝑦
𝑑𝑥
 

(𝑥0 ,𝑦0)
= 𝑓(𝑥0 , 𝑦0)  from ①  

⇒ 𝑦 = 𝑦0 + 𝑓(𝑥0, 𝑦0) (𝑥 − 𝑥0)  

⇒  𝑦1 = 𝑦0 + 𝑓(𝑥0, 𝑦0) (𝑥1 − 𝑥0)                    ∵ 𝑦  𝑥1 =  𝑦1 

⇒  𝑦1 = 𝑦0 + ℎ𝑓(𝑥0, 𝑦0)                                  ∵  𝑥1 − 𝑥0 = ℎ 

 Similarly for range   𝑥1, 𝑥2  

 𝑦2 = 𝑦1 + ℎ𝑓(𝑥1, 𝑦1)  

⋮  

 𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑥𝑛−1, 𝑦𝑛−1)  

It is evident from the given figure that   ℎ  has to be kept small to avoid the 

approximations diverging away from the curve. As a result, this method is very 

slow and needs to be improved.  

Example7 Using Euler’s method, Compute  𝑦 0.12  for the initial value problem:     

   
𝑑𝑦

𝑑𝑥
= 𝑥3 + 𝑦 ;  𝑦 0 = 1 , taking  ℎ = 0.02 . 

Solution: Given  𝑓(𝑥, 𝑦) = 𝑥3 + 𝑦 ,   𝑥0 = 0,  𝑦0 = 1,  𝑥𝑛 = 𝑥𝑛−1 + ℎ ,  ℎ = 0.02 

               ∴ 𝑥1 = 0.02 ,  𝑥2 = 0.04 ,  𝑥3 = 0.06 ,  𝑥4 = 0.08  ,  𝑥5 = 0.1   

               Using Euler’s method  𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑥𝑛−1, 𝑦𝑛−1) 

           ⇒   𝑦𝑛 = 𝑦𝑛−1 + ℎ 𝑥𝑛−1
3 + 𝑦𝑛−1                                                 ⋯① 

         Putting  𝑛 = 1 in ①,  𝑦1 = 𝑦 0.02 = 𝑦0 + ℎ   𝑥0
3 + 𝑦0  

     ∴  𝑦1 = 1 + 0.02  0 + 1 = 1.02  

         Putting  𝑛 = 2 in ①,  𝑦2 = 𝑦 0.04 = 𝑦1 + ℎ   𝑥1
3 + 𝑦1    

     ∴  𝑦2 = 1.02 + 0.02  (0.02)3 + 1.02 = 1.04040016  

         Putting  𝑛 = 3 in ①,   𝑦3 = 𝑦 0.06 = 𝑦2 + ℎ   𝑥2
3 + 𝑦2  

      ∴  𝑦3 = 1.04040016 + 0.02  (0.04)3 + 1.04040016 = 1.061209443  

         Putting  𝑛 = 4 in ①,   𝑦4 = 𝑦 0.08 = 𝑦3 + ℎ   𝑥3
3 + 𝑦3  

      ∴  𝑦4 = 1.061209443 + 0.02  (0.06)3 + 1.061209443 = 1.082437952  

         Putting  𝑛 = 5 in ①,   𝑦5 = 𝑦 0.1 = 𝑦4 + ℎ   𝑥4
3 + 𝑦4  

      ∴  𝑦5 = 1.082437952  + 0.02  (0.08)3 + 1.082437952 = 1.104096951 

         Putting  𝑛 = 6 in ①,   𝑦6 = 𝑦 0.12 = 𝑦5 + ℎ   𝑥5
3 + 𝑦5  

      ∴  𝑦6 = 1.104096951  + 0.02  (0.1)3 + 1.104096951 = 1.126198890 

      Thus at  𝑥 = 0.12,  𝑦 = 1.126198890   ⇒ 𝑦 0.12 = 1.126198890 

Example8 Using Euler’s method, solve  
𝑑𝑦

𝑑𝑥
=

𝑥−𝑦

2
 ;  𝑦 0 = 1 , over the interval        

        0,2 , taking the step size 
1

2
 

Solution: Given  𝑓(𝑥, 𝑦) =
𝑥−𝑦

2
 ,   𝑥0 = 0,  𝑦0 = 1,  𝑥𝑛 = 𝑥𝑛−1 + ℎ ,  ℎ =

1

2
 



               ∴ 𝑥1 =
1

2
= 0.5 ,  𝑥2 = 1 ,  𝑥3 =

3

2
= 1.5 ,  𝑥4 = 2     

               Using Euler’s method  𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑥𝑛−1, 𝑦𝑛−1) 

           ⇒   𝑦𝑛 = 𝑦𝑛−1 + 
ℎ

2
 𝑥𝑛−1 − 𝑦𝑛−1  

            or  𝑦𝑛 = 𝑦𝑛−1 + 0.25 𝑥𝑛−1 − 𝑦𝑛−1                                             ⋯① 

      Putting  𝑛 = 1 in ①,  𝑦1 = 𝑦  
1

2
 = 𝑦0 + 0.25(𝑥0 − 𝑦0) 

     ∴  𝑦1 = 1 + 0.25(0 − 1) = 0.75  

       Putting  𝑛 = 2  in ①,  𝑦2 = 𝑦 1 = 𝑦1 + 0.25(𝑥1 − 𝑦1) 

     ∴  𝑦2 = 0.75 + 0.25(0.5 − 0.75) = 0.6875  

       Putting  𝑛 = 3 in ①,    𝑦3 = 𝑦  
3

2
 = 𝑦2 + 0.25(𝑥2 − 𝑦2) 

     ∴  𝑦3 = 0.6875 + 0.25(1 − 0.6875) = 0.765625  

        Putting  𝑛 = 4 in ①,    𝑦4 = 𝑦 2 = 𝑦3 + 0.25(𝑥3 − 𝑦3) 

     ∴  𝑦4 = 0.765625 + 0.25(1.5 − 0.765625 ) = 0.94921875  

9.5 Modified Euler’s Method 

Though Euler's method is quite easy to implement, but unless the step size ℎ is 

very small, the truncation error will be large and the results will be inaccurate.  

As per Modified Euler's method, a better approximation of   𝑦1 is given by 

improving 𝑓(𝑥0, 𝑦0) obtained by Euler's method as shown: 

𝑦1
(1)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0 , 𝑦0) +  𝑓 (𝑥1 , 𝑦1)]  

𝑦1
(2)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0 , 𝑦0) +  𝑓 𝑥1 , 𝑦1

(1)
 ]  

⋮  

Continue approximating  𝑦1  until two consecutive values are coincident to a    

specific degree of accuracy. 

∴ 𝑦1
(𝑘)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0 , 𝑦0) +  𝑓 𝑥1 , 𝑦1

(𝑘−1)
 ]  

Repeat the procedure for 𝑦2 ,  𝑦3,  𝑦4 … to find  𝑦𝑛   

Example9 Use Modified Euler’s method to obtain  𝑦 0.2  , 𝑦 0.4  correct to 3 

decimal places, given that 
𝑑𝑦

𝑑𝑥
= 𝑦 − 𝑥2 ;  𝑦 0 = 1  

Solution: Given  𝑓(𝑥, 𝑦) = 𝑦 − 𝑥2  ,   𝑥0 = 0,  𝑦0 = 1              

               By Euler’s method  𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑥𝑛−1, 𝑦𝑛−1) 

        𝑖.    To evaluate 𝑦 0.2 ,  ℎ = 0.2, 𝑥1 = 0 + 0.2 = 0.2 

              𝑦1 = 𝑦 0.2 = 𝑦0 + ℎ𝑓 𝑥0, 𝑦0 , 𝑓 𝑥0, 𝑦0 = 𝑦0 − 𝑥0
2 = 1 − 0 = 1 

                    ∴  𝑦1 = 1 + 0.2(1) = 1.2  

             𝑓 𝑥1, 𝑦1 = 𝑦1 − 𝑥1
2 = 1.2 − (0.2)2 = 1.16 

             Now improving 𝑦1 using Modified Euler’s method 

                     𝑦1
(1)

= 𝑦0 +
ℎ

2
 𝑓(𝑥0, 𝑦0) +  𝑓 (𝑥1 , 𝑦1)  



                      ∴ 𝑦1
(1)

= 1 +
0.2

2
 1 + 1.16 = 1.216 

              𝑓 𝑥1 , 𝑦1
(1)
 = 𝑦1

(1)
− 𝑥1

2 = 1.216 − (0.2)2 = 1.176 

                          𝑦1
(2)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) +  𝑓 𝑥1 , 𝑦1

(1)
 ] 

                      ∴ 𝑦1
(2)

= 1 +
0.2

2
 1 + 1.176 = 1.2176  

              𝑓 𝑥1 , 𝑦1
(2)
 = 𝑦1

(2)
− 𝑥1

2 = 1.2176 − (0.2)2 = 1.1776 

                          𝑦1
(3)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) +  𝑓 𝑥1 , 𝑦1

(2)
 ] 

                       ∴ 𝑦1
(3)

= 1 +
0.2

2
 1 + 1.1776 = 1.21776 = 𝑦 0.2   

Thus by Modified Euler’s method, we have improved  𝑦 0.2  from 1.2 to 1.21776  

𝑖𝑖.    To evaluate 𝑦 0.4 ,  ℎ = 0.2, 𝑥2 = 0.2 + 0.2 = 0.4 

                        𝑦2 = 𝑦 0.4 = 𝑦1 + ℎ𝑓 𝑥1, 𝑦1 , 

             𝑓 𝑥1, 𝑦1 = 𝑦1 − 𝑥1
2 = 1.21776 − (0.2)2 = 1.17776 

                    ∴  𝑦2 = 1.21776 + 0.2(1.17776) = 1.453312  

             𝑓 𝑥2, 𝑦2 = 𝑦2 − 𝑥2
2 = 1.453312 − (0.4)2 = 1.293312 

             Now improving 𝑦1 using Modified Euler’s method 

                     𝑦2
(1)

= 𝑦1 +
ℎ

2
 𝑓(𝑥1, 𝑦1) +  𝑓 (𝑥2 , 𝑦2)  

                  ∴ 𝑦2
(1)

= 1.21776 +
0.2

2
 1.17776 + 1.293312 = 1.4648672 

          𝑓 𝑥2 , 𝑦2
(1)
 = 𝑦2

(1)
− 𝑥2

2 = 1.4648672 − (0.4)2 = 1.3048672 

                      𝑦2
(2)

= 𝑦1 +
ℎ

2
 𝑓(𝑥1, 𝑦1) + 𝑓 𝑥2 , 𝑦2

(1)
   

                   ∴ 𝑦2
(2)

= 1.21776 +
0.2

2
 1.17776 + 1.3048672 = 1.46602272 

           𝑓 𝑥2 , 𝑦2
(2)
 = 𝑦2

(2)
− 𝑥2

2 = 1.46602272 − (0.4)2 = 1.30602272 

                       𝑦2
(3)

= 𝑦1 +
ℎ

2
 𝑓(𝑥1 , 𝑦1) + 𝑓 𝑥2 , 𝑦2

(2)
    

                    ∴ 𝑦2
(3)

= 1.21776 +
0.2

2
 1.17776 + 1.30602272 = 1.466138272 

Thus by Modified Euler’s method, we have improved  𝑦 0.4  from 1.453312 to 

1.466138272 correct to 3 decimal places.  

Example10 Use Modified Euler’s method to obtain  𝑦 1.2   correct to 3 decimal     

places, given that 
𝑑𝑦

𝑑𝑥
= ln(𝑥 + 𝑦) ;  𝑦 1 = 2  

Solution: Given  𝑓(𝑥, 𝑦) = ln(𝑥 + 𝑦)  ,   𝑥0 = 1,  𝑦0 = 2              

               By Euler’s method  𝑦𝑛 = 𝑦𝑛−1 + ℎ𝑓(𝑥𝑛−1, 𝑦𝑛−1) 

              To evaluate 𝑦 1.2 ,  ℎ = 0.2, 𝑥1 = 1 + 0.2 = 1.2 

              𝑦1 = 𝑦 1.2 = 𝑦0 + ℎ𝑓 𝑥0, 𝑦0  

   𝑓 𝑥0, 𝑦0 = 𝑙𝑛  𝑥0 +  𝑦0 = ln 1 + 2 = 1.09861 

         ∴  𝑦1 = 2 + 0.2(1.09861) = 2.21972  

  𝑓 𝑥1, 𝑦1 = 𝑙𝑛 𝑥1 +  𝑦1 = ln 1 + 2.21972 = 1.16929 



             Now improving 𝑦1 using Modified Euler’s method 

                         𝑦1
(1)

= 𝑦0 +
ℎ

2
 𝑓(𝑥0, 𝑦0) +  𝑓 (𝑥1 , 𝑦1)  

                      ∴ 𝑦1
(1)

= 2 +
0.2

2
 1.09861 + 1.16929 = 2.22679 

              𝑓 𝑥1 , 𝑦1
(1)
 = ln 𝑥1 +  𝑦1

(1)
 = ln(1 + 2.22679) = 1.17149 

                          𝑦1
(2)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) +  𝑓 𝑥1 , 𝑦1

(1)
 ] 

                      ∴ 𝑦1
(2)

= 2 +
0.2

2
 1.09861 + 1.17149 = 2.22701  

              𝑓 𝑥1 , 𝑦1
(2)
 = ln 𝑥1 +  𝑦1

(2)
 = ln 1 + 2.22701 = 1.17156 

                          𝑦1
(3)

= 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) +  𝑓 𝑥1 , 𝑦1

(2)
 ] 

                       ∴ 𝑦1
(3)

= 2 +
0.2

2
 1.09861 + 1.17156 = 2.227017 = 𝑦 1.2   

Thus by Modified Euler’s method, we have improved   𝑦 1.2  from 2.21972 to 

2.227017 correct to 4 decimal places 

9.6 Runge- Kutta’s Method 

Runge-Kutta method is preferment of the concepts used in Euler's and Modified 

Euler's methods.  

Consider the initial value problem 

   
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) ;   𝑦 𝑥0 = 𝑦0                                                          ⋯① 

Taylor’s series expansion of a function 𝑦 𝑥  about 𝑥 = 𝑥0 is given by 

𝑦 𝑥 = 𝑦0 +  𝑥 − 𝑥0 𝑦0
′ +

1

2!
 𝑥 − 𝑥0 

2𝑦0
′′ +

1

3!
 𝑥 − 𝑥0 

3𝑦0
′′′ + ⋯        

Now  𝑦1 = 𝑦(𝑥0 + ℎ), ∴ Putting  𝑥 = 𝑥0 + ℎ  in Taylor’s series, we get           

 𝑦1 = 𝑦 𝑥0 + ℎ = 𝑦0 + ℎ𝑦0
′ +

ℎ2

2!
𝑦0
′′ + ⋯                                         ⋯② 

Also by Euler’s method  𝑦1 = 𝑦0 + ℎ𝑓 𝑥0 , 𝑦0 = 𝑦0 + ℎ𝑦0
′            ⋯③  

From ② and ③, Euler’s method is in consonant to Taylor’s series expansion upto 

first 2 terms i.e. till the term containing  ℎ of order one. 

Euler’s method itself is first order Runge-Kutta method. 

Similarly it can be shown that Modified Euler’s method coincides with Taylor’s 

series expansion upto first 3 terms.  

Modified Euler’s method is given by  𝑦1 = 𝑦0 +
ℎ

2
[𝑓(𝑥0, 𝑦0) +  𝑓 (𝑥1 , 𝑦1)] 

⇒   𝑦1 = 𝑦0 +
1

2
[ℎ𝑓(𝑥0 , 𝑦0) + ℎ 𝑓 (𝑥1 , 𝑦1)]  

       Now 𝑥1 = 𝑥0 + ℎ  and 𝑦1 = 𝑦0 + ℎ𝑓 𝑥0, 𝑦0  by Euler’s method  

⇒   𝑦1 = 𝑦0 +
1

2
[ℎ𝑓(𝑥0 , 𝑦0) + ℎ𝑓 𝑥0 + ℎ, 𝑦0 + ℎ𝑓 𝑥0, 𝑦0  ]                                                   

 ⇒ 𝑦1  =  𝑦0 +
1

2
  𝐾1 +  𝐾2   

Where  𝐾1 = ℎ𝑓 𝑥0, 𝑦0  ,   𝐾2 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 +  𝐾1  

∴ Modified Euler’s method itself is second order Runge-Kutta method. 



It is in consonant to Taylor’s series expansion upto first 3 terms i.e. till the term 

containing  ℎ of order two. 

Similarly third order Runge-Kutta method tallies with Taylor’s series expansion 

upto first 4 terms i.e. till the term containing  ℎ of order three and is given by 

 𝑦1 =   𝑦0 +
1

6
  𝐾1 + 4 𝐾2 +  𝐾3   

where  𝐾1 = ℎ𝑓 𝑥0, 𝑦0   

            𝐾2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾1

2
 , 

            𝐾3 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 + ℎ𝑓(𝑥0 + ℎ,  𝑦0 +  𝐾1    

On the similar lines, Runge- Kutta’s method of order four is collateral with 

Taylor’s series expansion upto first 5 terms i.e. till the term containing  ℎ of order 

four.  

Numerical solution of initial value problem given by ①, using fourth order Runge-

Kutta method is:  𝑦1 =   𝑦0 +
1

6
  𝐾1 + 2 𝐾2 + 2 𝐾3 + 𝐾4  

where  𝐾1 = ℎ𝑓 𝑥0, 𝑦0   

           𝐾2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾1

2
  

           𝐾3 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾2

2
   

           𝐾4 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 +  𝐾3    

Fourth order Runge- Kutta’s method (commonly known as Runge- Kutta method), 

provides most accurate result and is widely used to approximate initial value 

problems.  

Example11 Solve the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑦 − 𝑥 ;  𝑦 0 = 1 , at 𝑥 = 0.1 , 

using  Runge-Kutta method. Also compare the numerical solution obtained with 

the exact solution. 

Solution: Given  𝑓(𝑥, 𝑦) = 𝑥 + 𝑦,      𝑥0 = 0,  𝑦0 = 1,  ℎ = 0.1 

                Runge-Kutta method of 4
th

 order is given by 

                𝑦1 =   𝑦0 +
1

6
  𝐾1 + 2 𝐾2 + 2 𝐾3 + 𝐾4                                  ⋯① 

                𝐾1 = ℎ𝑓 𝑥0 , 𝑦0 = ℎ 𝑦0 − 𝑥0 = 0.1 1 − 0 = 0.1  

                𝐾2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾1

2
 =  0.1   1 +

0.1

2
 −  0 +

0.1

2
  = 0.1 

                𝐾3 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾2

2
  = 0.1   1 +

0.1

2
 −  0 +

0.1

2
  = 0.1 

                𝐾4 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 +  𝐾3  = 0.1  1 + 0.1 −  0 + 0.1  = 0.1 

              Substituting values of   𝐾1,   𝐾2,   𝐾3,   𝐾4  in  ①, we get the solution as: 

                𝑦1 =  1 +
1

6
 0.1 + 2(0.1) + 2(0.1) + 0.1 = 1.1 

Again to find exact solution of the initial value problem 

  
𝑑𝑦

𝑑𝑥
− 𝑦 = −𝑥, which is a linear differential equation 



Integrating Factor (I.F.) = 𝑒 −𝑑𝑥 = 𝑒−𝑥  

Solution is given by  𝑦𝑒−𝑥 = − 𝑥𝑒−𝑥𝑑𝑥 

                            ⇒   𝑦𝑒−𝑥 = 𝑥𝑒−𝑥 + 𝑒−𝑥 + 𝑐 

                            ⇒    𝑦 = 𝑥 + 1 + 𝑐𝑒𝑥   

Given that 𝑦 0 = 1    ⇒ 1 = 0 + 1 + 𝑐      ∴ 𝑐 = 0 

                           ⇒ 𝑦 = 𝑥 + 1  

                               𝑦 0.1 = 0.1 + 1 = 1.1  

Example12 Solve the differential equation 
𝑑𝑦

𝑑𝑥
= ln(𝑥 + 𝑦);  𝑦 0 = 2 ,  

at 𝑥 = 0.3 , using  Runge-Kutta method of 4
th

 order by dividing into   

two steps of  ℎ = 0.15 each. Compare the results with one step 

solution. 

Solution: 𝑖. Given  𝑓(𝑥, 𝑦) = ln(𝑥 + 𝑦),      𝑥0 = 0,  𝑦0 = 2, ℎ = 0.15 

                               Runge-Kutta method of 4
th

 order is given by 

                         𝑦1 =   𝑦0 +
1

6
  𝐾1 + 2 𝐾2 + 2 𝐾3 + 𝐾4                                ⋯① 

         𝐾1 = ℎ𝑓 𝑥0, 𝑦0 = 0.15 ln 𝑥0 + 𝑦0 = 0.15 ln(0 + 2) = 0.10397 

         𝐾2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾1

2
 = 0.15 ln  0 +

0.15

2
+ 2 +

0.10397

2
 = 0.11321 

         𝐾3 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾2

2
  = 0.15 ln  0 +

0.15

2
+ 2 +

0.11321

2
 = 0.11353 

         𝐾4 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 +  𝐾3  = 0.15 ln 0 + 0.15 + 2 + 0.11353 = 0.12254 

              Substituting values of   𝐾1,   𝐾2,   𝐾3,   𝐾4  in  ①, we get the solution as: 

   𝑦1 = 𝑦 0.15 =  2 +
1

6
 0.10397 + 2 0.11321 + 2 0.11353 + 0.12254  

                          = 2.11333  

   Now taking 𝑥0 = 0.15,  𝑦0 = 2.11333, ℎ = 0.15 

 𝐾1 = ℎ𝑓 𝑥0, 𝑦0 = 0.15 ln 𝑥0 + 𝑦0 = .15 ln(.15 + 2.11333) = .12253  

𝐾2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾1

2
 = .15 ln  . 15 +

.15

2
+ 2.11333 +

.12253

2
 = .13129  

𝐾3 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾2

2
  = .15 ln  . 15 +

.15

2
+ 2.11333 +

.13129

2
 = .13157  

𝐾4 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 +  𝐾3   = .15 ln . 15 + .15 + 2.11333 + .13157  = .14011  

              Substituting values of   𝐾1,   𝐾2,   𝐾3,   𝐾4  in  ①, we get the solution as: 

  𝑦 0.3 = 2.11333 +
1

6
 . 12253 + 2 . 13129 + 2 . 13157  + .14011  

               = 2.24472 

          𝑖𝑖.  Solving in single step of  ℎ = 0.3 

                Given  𝑓(𝑥, 𝑦) = ln(𝑥 + 𝑦),    𝑥0 = 0,  𝑦0 = 2,  ℎ = 0.3 

                Runge-Kutta method of 4
th

 order is given by 

                         𝑦1 =   𝑦0 +
1

6
  𝐾1 + 2 𝐾2 + 2 𝐾3 + 𝐾4                                ⋯① 

            𝐾1 = ℎ𝑓 𝑥0, 𝑦0 = 0.3 ln 𝑥0 + 𝑦0 = 0.3 ln(0 + 2) = 0.20794  



            𝐾2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾1

2
 = 0.3 ln  0 +

0.3

2
+ 2 +

0.20794

2
 = 0.24381 

            𝐾3 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾2

2
  = 0.3 ln  0 +

0.3

2
+ 2 +

0.24381

2
 = 0.24619 

            𝐾4 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 +  𝐾3  = 0.3 ln 0 + 0.3 + 2 + 0.24619 = 0.28038 

              Substituting values of   𝐾1,   𝐾2,   𝐾3,   𝐾4  in  ①, we get the solution as: 

   𝑦1 =  2 +
1

6
 0.20794 + 2(0.24381) + 2(0.24619) + 0.28038 = 2.24472 

Example13 Solve the differential equation 
𝑑𝑦

𝑑𝑥
= 𝑥2 + 𝑦2;  𝑦 0 = 2 , at 𝑥 = 0.1 , 

using  Runge-Kutta method.  

Solution: Given  𝑓(𝑥, 𝑦) = 𝑥2 + 𝑦2 ,      𝑥0 = 0,  𝑦0 = 2,  ℎ = 0.1 

                Runge-Kutta method of 4
th

 order is given by 

                𝑦1 =   𝑦0 +
1

6
  𝐾1 + 2 𝐾2 + 2 𝐾3 + 𝐾4                                  ⋯① 

       𝐾1 = ℎ𝑓 𝑥0, 𝑦0 = ℎ 𝑥0
2 + 𝑦0

2 = 0.1 0 + 4 = 0.4  

       𝐾2 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾1

2
 =  0.1   0 +

0.1

2
 

2

+  2 +
0.4

2
 

2

 = 0.48425 

       𝐾3 = ℎ𝑓  𝑥0 +
ℎ

2
, 𝑦0 +

 𝐾2

2
  = 0.1   0 +

0.1

2
 

2

+  2 +
0.48425

2
 

2

 = 0.50296 

       𝐾4 = ℎ𝑓 𝑥0 + ℎ, 𝑦0 +  𝐾3   = 0.1  0 + 0.1 2 +  2 + 0.50296 2 = 0.62748 

              Substituting values of   𝐾1,   𝐾2,   𝐾3,   𝐾4  in  ①, we get the solution as: 

                𝑦1 =  2 +
1

6
 0.4 + 2(0.48425) + 2(0.50296) + 0.62748 = 2.50032 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

         


