Chapter 8
Numerical Differentiation

&
Integration

8.1 Introduction
Differentiation and integration are basic mathematical operations with a wide

range of applications in various fields of science and engineering. Simple
continuous algebraic or transcendental functions can be easily differentiated or
integrated directly. However at times there are complicated continuous functions
which are tedious to differentiate or integrate directly or in the case of
experimental data, where tabulated values of variables are given in discrete form,
direct methods of calculus are not applicable.

In this chapter, we develop ways to approximate the derivatives of function
y = f(x), when only data points are given and also to integrate definite integrals
by splitting the area under the curve in specified ways.

8.2 Numerical Differentiation
Numerical differentiation is the process of computing the value of the derivative of
an explicitly unknown function, with given discrete set of points(x;,y;), i =
0,1,2,3,....,n. To differentiate a function numerically, we first determine an
interpolating polynomial and then compute the approximate derivative at the given
point.
If x;’s are equispaced
Newton's forward interpolation formula is used to find the derivative near the
beginning of the table.
Newton's backward interpolation formula is used to compute the derivation

near the end of the table.
Stirling’s formula is used to estimate the derivative near the centre of the table.

If x;’s are not equispaced, we may find f(x) using Newton’s divided difference
method or Lagrange’s interpolation formula and then differentiate it as many times
as required.

8.2.1 Derivatives Using Newton’s Forward Interpolation Formula
Newton’s forward interpolation formula for the function y = f(x) is given by
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8.2.2 Derivatives Using Newton’s Backward Interpolation Formula
Newton’s backward interpolation formula for the function y = f(x) is given by

P+D®+2) g3 p(p+1)(p+2)(p+3) Uy, + -

p(p+1)
Y = Yo+ 0V + == Vi + = Yo t+ " ,
p = x_hxn .. D
Differentiating (D with respect to p
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. dy _ l[ Vyn | Vyn | Viyn ]
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8.2.3 Derivatives Using Stirling’s Interpolation Formula
Stirling’s central difference interpolation formula (taking x, as the middle value
of the table) is given by:
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8.2.4 Derivatives of Polynomial with Unequispaced x;’s

In case where x;’s are not equispaced in a given data, the polynomialy = f(x)
may be found using Newton’s divided difference method or Lagrange’s
interpolation formula and then direct differentiation may be applied.

Remark:

» In case derivative has to be found at a point, whose value needs to be
interpolated, then first apply applicable interpolation technique and then
differentiate the function.

» In all the cases irrespective of data points being equispaced or not, the
polynomial y = f(x) may be found using the applicable interpolation
formulae and then direct differentiation can be done using usual calculus
techniques.



Example 1 Given a cubic polynomial with following data points

X 0 1 2 3
f(x) 5 6 3 8

Fmd and atx =0

Solution: Derivative has to be evaluated near the starting of the table, thereby
constructing forward difference table for the function y = f(x)

X Yy - - AS
: 5
17—
1 | 4 IS
-3 i
2 ’ |
5
. 8

To find the derivative at x = 0, taking x, = 0 and applying the relation:
dy _1 _ Ny Ny, Ay,
L = =|ay, + 2oy @

Axly = x, 2 3

Fromtable h = 1, Ay, =1, A%y, = —4, A3y, = 12, A*y, =0
Substituting these values in D, we get

S
%y _ 1Az, _ A3 EL VI

Also 2 x:xo_hZ[AyO Ay, +2 A%y, ]
.4y N _ _
"ax2x=0_12[ 4—-12+0] =

Aliter

Newton’s forward interpolation formula given by:

y = Yo + phy, + ZE2 A%y, +WA3% +o,p=—2 .0

x—0

XOZO, yO:5’h=1.‘-p=T=x
Also from table Ay, = 1, A%y, = —4, A3y, = 12
Substituting these values in D, we get

y_5+x(1)+"(" 1)

( 4)+x(x 1)(x 2) (12)
>y=2x3—-8x2+7x+5

22— 6x? —16x+7
dx



d
=2 =7
dx x =0

Also Z—y = 12x — 16
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- a?y =16

" dx? x=0
Example 2 Given a polynomial with following data points:

b 1.0 1.1 1.2 1.3 1.4 1.5 1.6
f(x) 7.989 8403 8.781 9.129 9.451 9.750 10.031

2
Find2Zand %Y atx = 1.1and x = 1.5
dx dx

Solution: Derivatives has to be evaluated near the starting as well as towards the
end of the table, thereby constructing difference table for the function y = f(x)

x y=f(x) 154diff 2mddiff 374diff 4"diff S5"diff 6 *diff

1.0 7.989

0.414
1.1 8.403 —0.036
0.378 ... 0.006
1.2 8.781 —0.030"...__ —0.002
0.348 0.004 ... 0.001
1.3 9.129 —0.026 —0.001"% 0.002
0.322 0.003.." 003
1.4 9451 —0.023." 0.002
0.299, . 1008
1.5 9750 7 —0.018
0.281
1.6 10.031
To find the derivative at x = 1.1, taking x, = 1.1 and applying the relation:
dy 1 Ay, |, My, Aty, | ASyg
Ex=x0:Z[Ay0_ L - _] - @

From table h = 0.1, Ay, = 0.378, A%y, = —0.03, A3y, = 0.004,
A*y, = —0.001, A%y, = 0.003
Substituting these values in D, we get

(=0.03)

d_y — i 0378 _ + 0.004 _ (-0.001) + 0.003] — 3952
dxly =11 0.1 2 3 4
d%y 1 11 5,5
Also E ‘= xq = ﬁ[AZYO — A3y0 + EA4yO — EA Yo + ]
d?y 1

|-0.03 - 0.004 + 22 (—0.001) — (0.003)| = —3.74

dx2l, o~ (0.1)2

To find the derivative at x = 1.5, taking x,, = 1.5 and applying the relation:



d v? v3 v4 v4
A =2y, + D D I T ne)
dxly =x, h 2 3 4

From table h = 0.1, Vy, = 0.299, V?y, = —0.023, V3y, = 0.003,
V*y, = —0.001, V°y, = 0.001
Substituting these values in @), we get

5% _ 1 [O 299 + & 0023) 4 0003 | (z0.001) 0.001]
dxly =15 3 4

= 2.8845

x2

d?y _ 12 3 11 g Sys
Also ]xx = = [V29 + Py + SV + 2Ty, + |

. d%y ~
= (01)2[ 0.023 +0.003 + = (=0.001) + 2 (0.001)| = —2.0083

Example3 Following table gives the census population of a state for the years
1961 to 2001.

Year 1961 1971 1981 1991 2001

Population 199 3565 5381 7721 9461
(Million)

Find the rate of growth of the population in the year 2001

Solution: Derivative has to be evaluated near the end of the table, thereby
constructing backward difference table for the function y = f(x)

Year  Population

2 ; :
X f(x) v - : :
161 19.96
16.69
1971 36.65 5.47
i, —9.23
1981 58.81 —-3.76 11.99
o 276 J
- o R
17 4 Q"

2001 94.61
To find rate of growth (derivative) in the year 2001, taking x, = 2001 and
applying the relation:

d_y _ l [ Vz)’n V33’n V43’n ]
dxxzxn—thn+ e s .. D

From table h = 10, Vy, = 17.40, V?y, = —1, V3y, = 2.76, V*y, = 11.99
Substituting these values in D, we get

dy

] 2.76
dxly =2011

=L [17.40 LD
10 2 3

+@] = 2.08175



Example4 A slider in a machine moves along a fixed straight rod. Its
distance x cm along the rod is given below for various values of the time . Find the
velocity and acceleration of the slider when t = 0.3 seconds.

t(seconds) O 0. 02 03 04 05 06
x(cm) 30.13 31.62 32.87 33.64 33.95 33.81 33.24
Solution: Derivatives has to be evaluated towards the centre of the table, thereby
constructing central difference table for the functionx = f(¢t). Also A"x,,n =1,
2,3,3,4,5, 6 lie along the dotted line as shown.

t x=f(t) 15diff 2mddiff 374diff 4"diff 5*diff 6 diff

0 30.13

1.49
0.1 3162 ~0.24
1.25 —0.24
0.2 3287 —0.48 0.26
0.77 0.02 —0.27
0.3 33.64 ~0.46 ~0.01 0.29
031] 0.01 0.02
0.4 3395 ~0.45 " » 001
—0.14 0.02
0.5 3381 ~0.43
~0.57

0.6 33.24

To find the velocity (derivative) at t = 0.3, taking t, = 0.3 and applying the
relation:

dx 1 [(Ax0+ Ax_l) 1(A3x_1+ A3x_2) " 1 (ASx_2+ A5x_3) ] ©

dtlg=¢, h 2 6 2 30 2

From table h = 0.1, Ax, = 0.31 , Ax_, = 0.77 , A3x_, = 0.01, A3x_, = 0.02,
A®x_, = 0.02., A®x_; = —0.27 All the positions have been shown, enclosed in
boxes.

Substituting these values in D, we get

ax =1 [(w) - 1(w) + i(0'02_0'27)] = 5.33 cm/seconds

dtly g3 0.1 2 6 2 30 2

To find the acceleration (second derivative) at ¢t = 0.3 and applying the relation

arx —1fpz,  _ 14 L A6y . — ...

), [A Xoq =5 A% + o A%x 5 ] ..@

Also from table, A%x_, = —0.46,, A*x_, = —0.01, A°x_, = 0.29
Substituting these values in @), we get

i —[(~0.46) — = (-0.01) + - (0.29)| = —45.60 cm/seconds’

dt2lg =03 (0.1)2




Example5 The following data gives corresponding values of pressure ‘P’ and
specific volume ‘V’ of a super heated expandable system

Vv 2 4 6 8 10
P 105 427 253 16.7 13
Find the rate of change of volume with respect to pressure, when P = 105 units.

Solution: Values of P are not equispaced, thereby constructing divided difference
table for the function V = f(P)

P V=f(P) 15tdiff 2mddiff 374diff  4"diff

105 2
—0.032 "
42.7 4 0.001 e
—0.115 —0.00005 e, N
25.3 6 0.005 0.000007
—0.233 —0.0007
16.7 8 0.025
—0.541
13 10

Newton’s divided difference formula is given by

V=FfP)=f(Py)+ P —P)f(Py, P1) + (P—F)(P —P)f(Py, P1,P;) +
(P_PO)(P_Pl)(P_PZ)f(POJ PllPZJ P3)+'”

Here P, = 105, P, = 42.7, P, = 25.3, P; = 16.7 f(P,) = 2,
f(P,, P;) =—-0.032, f(P,, P;,P,) =0.001, f(P,, P,,P,, P;) =—0.00005,
f(P,, Py, P,, P;, P,) =0000007
Substituting these values in D, we get
V=Ff(P)=2+(P—-105)(—0.032) + (P —105)(P — 42.7)(0.001)
+(P —105)(P — 42.7)(P — 25.3)(—0.00005)
+(P —105)(P — 42.7)(P — 25.3)(P — 16.7)(0.000007)
av

~ 2 =_-0.032 + (2P — 147.7)(.001) + (3P% — 505.4P + 1992)(—.000005)

dP
+[(3P? — 505.4P + 1992)(P — 16.7) + (P — 105)(P — 42.7)(P —
25.3(1)](0.000007)

d_V
aplp=105
It is evident that volume decreases with increase in pressure.

= —0.032 + 0.0623 + 0.9 — 11.1258 = —10.1955

Example6 Find y’(1) for the following the following data points of a polynomial
y=f).

x 02 4 6 8

y 4 8 15 7 6



Solution: To find y'(1) or Z—Z] , constructing forward difference table for the
x=1

functiony = f(x).

x y=f(x) A A*> A3 A*

0 4
2 8 3
7 —18"a
4 15 —-15 40
-8 22
6 7 7
-1
8 6

Newton’s forward interpolation formula given by:

Y =y, + pAy, + p(z;!—l) A%y, + p(p—lg)!(p—Z) A3y, + p(p—l)(z;!—z)(p—3) Aty + -+
X— X0
== e
— 2_ 3_ 2 _
N Z_Z = Ay, + sz!lAZyO n 3p 3Tp+2 A3y0 +4p 1821!+22p 6A4y0 oo @
 _ 1
Also —= = — )
in & _ Wdp
Again — = 2p dx e @
Using @ and @ in @), we get
- 2_ 3_ 2 _
Nowfor x =1,x, =0,h =2 ,~ p=?=0.5
Also from table Ay, = 4, A%y, = 3, A3y, = —18, A*y, = 40
Substituting these values in &, we get
dy _1 1-1 3(0.5)%2-6(0.5)42 _ 4(0.5)3-18(0.5)2+22(0.5)—-6
2 =3 [4+=23) + - (—18) + = 40)]
5y D) =2 =1[4+0+0.75+1.667] =2[6.417] = 3.2085
dxly=1 2 2

Note: Here formula for computing derivatives can not be applied directlyas p # 0
at x = 1 i. e. point at which derivative has to be computed does not exist in
the table and has to be interpolated first.

8.2.5 Maxima and Minima of a Tabulated Function:
Newton’s forward interpolation formula for the function y = f(x) is given by



— p(p-1) p(p-1(p-2) p(p-1(p-2)(p-3)
Y = yo +pAyo + == A%y + = Dy + m Ayo + -+,
_ X—=Xo
p=— .. D
Differentiating (U with respect to p
- 2_ 3_ 2 _
Z_y _ A}’Q + 2p 1A2y0 + 3p“—6p+2 A3_')/'0 + 4p°—-18p“+22p 6A4yo 4o @
p 2! 3! 41
- : - : _ dy _dy dp _
For finding maxima/minima of a function y = f(x), = dx
-l Z=0 N E)

dx h dp
Neglecting 4™ and higher order differences in equation @ and substituting in @,

we get a quadratic equation of the form A + Bp + Cp? = 0,where A, B, C are
constants. Solving for p and substituting in x = x, + ph , we get points of
maxima/minima for the function y = f(x).

» Newton’s forward method is apt for finding extreme values of a tabulated
data, wherever their location may be, by index p assuming values |p| > 1 ,
It the extreme value is not in vicinity of the point ( x,, y,). Yet we may also
use Newton’s backward or Stirling’s central differences formulae to locate
extreme values, if desired.

Example 7 From the following data, find maximum and minimum values of y.

X , 2 | 6
fx)y 2 Do ey e
Solution: Constructing forward difference table for the function y = f(x)
X y - ) A3
: 2
—2
2 | 48 »
—50 B
4 -0 R
—146
6 e

Newton’s forward interpolation formula for the function y = f(x) is given by

y =y, + pAy, + —p(i!_l) A%y, + —p(p—13)!(p—z) My, +-, p= x_hxo .. @

Takingx, =0, y, = 2, Ay, = =2, A%y, = —48, A3y, = —48
Substituting these values in D, we get
y =2+ p(-2) + BB (—48) 4+ L2220 (_gg)



=y =2-2p-24(p*-p) —8(p° - 3p* + 2p)
=>y=-8p3+6p+2 @
Differentiating @ with respect to p, we get

ay _ 2
p 24p= + 6

For y to be maximum, Z—;’ =0

= —-24p*+6=0

= p=05-05

Substituting in @ , maximum and minimum values of y are 4 and 0 respectively.
Example 8 From the following table, find x for which y is maximum.

X 3 4 ) 6 7 8
f(x) 0.205 0.240 0.259 0.262 0.250 0.224

Also find maximum value of y.

Solution: Constructing forward difference table for the function y = f(x), upto
third differences

x y=f(x) A A? A3
3 0.2057 .
0.035™ .
4 0.240 —0.016""p
0.019 0
5 0.259 —0.016
0.003 0.001
6 0.262 —0.015
—0.012 0.001
7 0.250 —-0.014
—0.026
8 0.224
Newton’s forward interpolation formula for the function y = f(x) is given by
y =y, + pAy, + p(pz—!_l)Azyo + —p(p—13)!(p—z) Ny, +-, p= x_hx" W@

Taking x, = 3, y, = 0.205, Ay, = 0.035, A%y, = —0.016, A3y, =0
Substituting these values in D, we get

y = (0205) + p(0.035) + X221 (~0.016) + 0 @
Differentiating with respect to p, we get

d 2p—-1

2 = 0,035 + 2= (~0.016) = 0.035 — (0.008)(2p — 1)

D 2
. dy
For y to be maximum, > 0

= 0.035 — (0.008)(2p — 1) =0



= p = 2.6875
Also p = x_hxo or x = xy + ph

= x =3+ 2.6875(1) = 5.6875

~ y Is maximum when x = 5.6875 or p = 2.6875

Substituting in @ , maximum value of y is given by
y = (0.205) + (2.6875)(0.035) + 22275

(—0.016) = 0.2628

8.3 Numerical Integration
Numerical Integration is the process of computing the value of definite
integral f: ydx , when the integrand function y = f(x) is given as discrete set of

points (x;,y;), i =0,1,2,3,....,n . As in case of numerical differentiation, here
also the integrand y = f(x) is first replaced with an interpolating polynomial, and
then it is integrated to compute the value of the definite integral. This gives us
‘quadrature formula’ for numerical integration.

Newton Cotes Quadrature Formula

For an explicitly known function y = f(x), let y take values y,, vy, Y2+ - Yn
for x taking values x,, x;, x5, ...x,, Where x;’s are equispaced.

To evaluate I = f: f(x)dx, divide the interval (a, b) into n equal parts, each of
width h, suchthata = xy; < x; < x, << x,=0Db

Clearly x, = x, +nhThenI = f:f(x)dx = f;:’Jrnhf(x)dx, nh=b—a

By Newton’s forward interpolation formula:

p(p—1) ,» p(p-1D)(p-2) ,3
2! A%yo + 3! A

f(x) =y, +pAy, + Yo+, X=xy+ph

h
w1 =[ 2" f)dx = h [ f(xo + ph)dp
X =xy+ph=dx =hdp,alsowhenx =x,,=0,x=x,+nh,p=n

=1= hfon [yo + pAy, +%A2y0 +WA3310 + ---]dp
- i 1 P\ 2y p (P 3 42 A3y g |
_h[py0+2Ay0+2!( )Ay0+3!(4 p+p)Ay0+ ]0

3 2

=>IEnh[yo+§Ayo+(%2—§)%+(n;—nz+n)%+---] N0

This is known as Newton’s Cote’s quadrature formula. Different quadrature
formulae are derived by takingn = 1, 2, 3, ... in equation (.



8.3.1Numerical Integration Using Trapezoidal Rule
If we put n = 1in Newton’s Cote’s quadrature formula given by D, we get the
curve through (x,, v,) and (x4, y;) as a straight line and being linear equation in x,
2" and higher order differences are zero.

+h 1 1 h
NOESE f,z)o f)dx = h[)’o +5A}’0] = h[)’o +5(}’1 _}’o)] = ;(}’o +y1)

x0+2h

Similarly fx0+h fx)dx = g(}ﬁ +2)

Xo+nh _h
fx0+(n_1)hf(x)dx — ;(Yn—l + yn)

Adding areas of all these intervals, we get:
f;;o " F(0)dx = E(yo + v1) +E(y1 +9,) + + 2 Onet + V)

b h
= fa f)dx = E[)’O + 21+ Y2+ + Yno1) + 9l
This is known as trapezoidal rule to evaluate f: f(x)dx, where the function
y = f(x) is given as discrete set of points (x;,y;), i =0,1,2,3, ....,n.

Geometrical Significance of Trapezoidal Rule

In trapezoidal rule, the curve y = f(x) is f(x)

replaced by n piecewise straight lines joining /PiCCCWiSC straight lines
the points (xq,y,) and (xi,yy) ; (x4, 1) /
and (xz, y2); .. s (Xn-1, ¥n-1) @nd Oy, y). ¢

The area under the curve y = f(x), between

the ordinates x = x, ; x = x,, and above x — /\
axis is approximately equal to the sum of areas %\ 14\/
2N ANV A

of n trapezoids obtained within the enclosed

f(x)

Xo %51 X2 Xn-1 %Xn

region, shown by shaded portion of adjoining b
a

figure.

Error in Trapezoidal Rule

Area of first trapezoid in the interval [x,, x,] is given by

A = S(J’O + 1) @
Also expanding y = f(x) by Taylor’s series about x = x,
Yy = FO) = yo + (x = x0)yg + - (o — x)2yf + -+ e
Putting x = x; = x, + h, we get

=>y1=y0+hy(’,+2—jy(’,’+--- E)

Satx = xy,y =y



Substituting 3 in D, we get
h r h? 17
Ay 25(3’0 t Yo+ hyo + -y + - )

h ST h?
=>A1=;(ZYO+hJ’0 T Yo T )tho + Y0 +_}’0

2.2!

Again taking area of single strip, under the curve y = f(x) , between the
ordinates x = x, and x = x; and above x — axis

A = f;::”hydx = f;;“h [yo + (x — x0) V6 +2i(x — x0)%yy + - ] dx using @

x0+h

3
[y0x+(x x0)? yh + (x— xo) + ]
h2 / n
= hyo +—¥o +§3’0 +
=~ Error in the interval [x,, x,] is given by
2 h3
TRCREET]

h? h3

Ar— Ay = [hyo + = Yot | —|Wot—yotoove +

1

(A N3y .= PP
_( 4)hy0+ - 12y0+

6

- h3
Thus lowest order error in interval [x,, x;] = —Ey(’,’

3

.. .. h
Similarly lowest error in interval [x,, x,] = —Ey{’

. h3
- Lowest error in interval [x,,_;, x,] = -5 V-1

Total error E = ——[yo + v+ -+ vl

Ify, = Maleum[Yo :J’1 y s Yri-il

Then Maximum E < — yx

hh? (b—a)h*
z_n_yx Z_Lyx '.'nhz(b—a)

12 12

~E <kh?  where k = -2y

Hence the error in trapezoidal rule is of orderh?, where h is the height of the
interval.

8.3.2Numerical Integration Using Simpson’s One-Third Rule

If we put n = 2in Newton’s Cote’s quadrature formula given by (D, we get the
curve through the points (x4, y,), (x1,v1) , (x5,v,) as a parabolic figure and
being quadratic equation in x, 3" and higher order differences are zero.



cD=] = f;:Hth(x)dx =2h [}’0 +§Ay0 + (E_E)%]

3 2/ 2
= 2h [yo + (1 = Yo) +2 (2 — 21 + yo)]
= %()’0 +4y; +y,)

Similarly f;,o:;hhf(x)dx = 2(3’2 +4y3 +y4)

+nh h
[ F()dx = = (Vg + 4Yn1 + Vi)
Xo+(n—-2)h 3

Adding areas of all these intervals, we get:
+nh h h
f;;o n f(x)dng(yo+4y1 +y2)+;(y2+4y3+y4)+'“+

h
+§ (J’n—z + 4yn—l + yn)

f:f(X)dx = g[(}’o ) 4@+ Y+t Y) F 20 st Yroo)]

This is known as Simpson’s one-third rule to evaluate ff f(x)dx, where the

function y = f(x) is given as discrete set of points (x;,y;), i =0,1,2,3, ....

Geometrical Significance of Simpson’s One-Third Rule

In Simpson’s one-third rule, the curve y = f(x) is /Y=f(XJ
replaced by arcs of 2™ degree parabolas with vertical
axis as shown in given figure.

Simpson’s one-third rule requires the given interval to
be divided into even number of sub-intervals, since we
are finding areas of two strips at a time.

, M.

Error in Simpson’s One-Third Rule

Area of first two strips in the interval [x,, x,] is given by
h

A, = 3 Vo +4y1 +¥2)

Also expanding y = f(x) by Taylor’s series about x = x,

nr

14 1 144 1
y = f(x) =y + (x — xo)J’O + ;(x - xo)ZJ’O + ;(x - xo)33’0

Putting x = x; = xo + hin @ , we get
! h2 n h3 1244
= Y1 =Yot+hyo+yo +5 v o
vatx =x,y =y
Putting x = x, = x, + 2h in @, we get
! 4h2 12 8h2 rnr
=Y, = Yo+ 2hyo +—-yo +— -y +-
vatx = X2, Y = Yo




Substituting @ and @ in O, A, may be written as

h ! h2 144 h3 n 4 4h2 144 8h2 n

5(3’0+4()’0+h3’0 +;3’0 +;Y0 )+(Yo+2h}’0+ 5 Yo + 51 Yo )+)
h r 8h? 17; 12h3 "

= A, = g(6)’o +6hyo +—-yo +—~yo + )

’ 4h3 17 2n* " 5hS
= 2hyo + 2h*yo + — v + - yo' + T vo +

Again taking actual area of two strip, under the curve y = f(x) , between the
ordinates x = x, and x = x, and above x — axis

A, = f;:’”h ydx = f;:’”h [yo + (x — x0)yo + %(x — x0)%yy + ] dx using @

X0 +2h

(x=x0)? v+ (x=x0)° yo' n ]

=[y0x+ 2! 3 2

X0

4h%2 , 8r3 ,, . 16h* ,,, . 32h° ;
=2hyo +—-vo+—yo +— Yo +—yo +

3 4 5 .
= 2hy, + 2h2yg + - y§ + -y + Ty
= Error in the interval [x,, x,] is given by
' , . 4h3 ,,  2n* ,,  4h®
AZ_AZ == [Zhy0+2h2y0 +Ty0 +Ty0 +1—5y(l)v+...]

! 4h3 12 2n* " 5h5
- [Zhyo +2hy + —yo + o'+ yo ]

(A _S\psyiw 4= P
_(15 18)hy0+ - 90y0+

.. h°
Thus lowest order error in interval [x,, x,] = —%y(‘,”

_ - h>
Similarly lowest order error in interval [x;, x,] = —5o 0

.. h°
Thus lowest order error in interval [x,_, x,,] = —%y,‘f’_l
h5 . . .
Total error E = — — [yg" + i + -+ ¥y
If y¥ = Maximum[y¥, y, ...,y |

h5

Then Maximum E < —%y,ﬁ” * number of intervals is 2
nhh* (b—a)h* ;
= -y = TRyl wnh=(b-a)
~ E <ph* ,wherep = —%y,ﬁ”

Hence the error in Simpson’s one-third rule is of order h*, where h is the
height of the interval.



8.3.3 Numerical Integration Using Simpson’s Three- Eighth Rule

If we put n = 3in Newton’s Cote’s quadrature formula given by O, we get the
curve through the points (xy,vo), (x1,y1) ,» (x3,¥,), (x3,y3) as a cubic
polynomial and hence 4" and higher order differences are zero.

~Newton’s Cote’s quadrature formula reduces to:

1= x°+3hf(x)dx —3h [}’0 +§Ayo + (E_E)Azyo n (%_9 + 3)A3y0]

3 2 2! 3!

Xo

3 3 1
= 3h[)’0 +E(Y1 — Yo) +Z(}’2 — 2y1 + ¥o) +§(3’3 =3y, + 3y, _J’o)]
3h
=3 [8yo + 12(y1 — ¥o) + 6(y2 — 21 + ¥o) + (3 — 3y, + 3y1 — ¥o)l

=2 [(8-12+6— Dy, + (12— 12 + 3)y, + (6 — 3y, +y3]

3h
=3 [YO + 3y, + 3y, +}’3]

XQ+6h

similarly [ *°"2* f()dx = 2 [y; + 3y, + 3ys + ¥l

h
f x0+n_ f(x)dx = % [Yn—3 + 3yn—z + 3yn—1 + yn]
Xo+(n—3)h 8

Adding areas of all these intervals, we get:

h 3h 3h
[ faodx =2 [yo + 3y + 3y2 + 5] + 3 [ys + 3y, + 3ys + e

Xo

3h
0+ = [Ynoa + 3Vno2 + 3Yno1 + il

b 3h
a x o n n-— n-—
w o fOdx = [0 + ) +30n + ¥t Vet s+t Ynp + Ynoa)
+2(y3 + Y6 + -+ Yn-3)]

This is known as Simpson’s three-eighths rule to evaluate f;’ f(x)dx, where the
function y = f(x) is given as discrete set of points (x;,y;), i =0,1,2,3,....,n.

Geometrical Significance of Simpson’s Three-Eighth Rule
y=p, (4
The Simpson’s 3/8 rule is similar to the 1/3 rule y=16

except that curve y = f(x) is replaced by arcs of =
3" degree polynomial curve, as shown in given
figure. It is used when it is required to take 3
segments at a time. Thus number of intervals
must be a multiple of 3.

N el X2

Kgs3



5 ,
It can be derived that the lowest order error in interval [x,, x3] = — 3 v

80
nhs

Maximum E < —— y” = number of intervals is g
nhh* (b—a)h*
== W T Ty W vmh=(b—-a)
~ E < qh* ,where g = —%y,ﬁ"

Hence error in Simpson’s 3/8 rule is of order h*, where h is the height of the
interval.

8.3.4 Applications of Numerical Integration

Numerical integration has numerous practical applications in the field of calculus.
Simpson’s é rule due to its ease in application and higher accuracy is a preferred
method in various application areas as given below:

Area bounded by a curve y = f(x) between the ordinates x =aand x = b,
above x — axis isgivenby A = f: ydx.

Volume of solid formed by revolving the curve y = f(x) between the
ordinates x = aand x = b along x — axis isgivenby V = f; Ty?dx .
Length of an arc of the curve y = f(x) between the ordinates x = aand x =

2
b and x — axis is given by f; 1+ (Z—i) dx

To find velocity when acceleration at different times is given in tabular form.
To find displacement when velocity is given as a function of time in discrete
form.

Remarks:

Example9 Evaluate fol

. . 1
Solution: i. To solve [,

=~ Dividing the interval (0,1) into 5 equal parts for the function f(x) =

» Simpson’s rules ideally returns more accurate results compared to
trapezoidal rule provided h is small, less than one essentially.

» Simpson’s § rule requires odd number of points (even number of sub-
intervals) for application.
» Simpson’s g rule requires number of sub-intervals to be multiple of 3.

1
1+x2

dx using

Trapezoidal rule taking h =

Simpson’s g rule taking h =

AR BRI

Simpson’s g rule taking h =
1

1+x2
Takingh=-=02,n=22=2=5
5 h 0.2

dx using trapezoidal rule

1
1+4x2




x 0 02 04 06 08 1
y=f(x) 1 096 086 074 061 05

1
1+x2

By trapezoidal rule fol dx = g[y0 + 21 + ¥y, +y3 +ys) + sl
0.

= 22 [1+ 2(0.96 + 0.86 + 0.74 + 0.61) + 0.5]

+ [ == dx = 0.784 using trapezoidal rule.

1+x2

1
1+x2

. 1 . . , 1
ii. Tosolve [ dx using Simpson’s - rule

Takingh = ~=025n=22=22=
4 h 0.25
- Dividing the interval (0,1) into 4 equal parts for the function f(x) = —

1+x2

x 0 025 05 075 1
y=f(kx) 1 094 08 064 05

S dx = %[()’0 +y4) + 40y +y3) +2(y;)]

- % [(1+0.5) +4(0.94 + 0.64) + 2(0.8)]

) 1 1
By Simpson’s - rule
y Simp 3 J; 1+x

- f01 L dx = 0.7850 using Simpson’s é rule

1+x2

1 1 . . , 3
iii. Tosolve dx using Simpson’s = rule
0 1+x2 P 8

1 b—-a 1-0
_’ n —
6 h

Taking h = =6

R

1
1+x2

=~ Dividing the interval (0,1) into 6 equal parts for the function f(x) =

1 2 4
xO__E_El

6 6 6 6 6
y=f(x) 1 097 09 08 069 059 05

: , 3 11 3h
By Simpson’s —rule Jy X = [(Vo +¥6) +3(y1 + ¥z +ya +y5) +2(y3)]

= E%[(l +0.5) + 3(0.97 + 0.9 + 0.69 + 0.59) + 2(0.8)]

11 . ) .3
: fo — dx = 0.7844 using Simpson’s . rule

Examplel0 Evaluate [2 sin x dx using

. . .. . 1 pes - 3 .
i. Trapezoidal rule ii. Simpson’s 3 rule iii. Simpson’s s rule, takingn = 6

Solution: Takingn =6, h = bra _0_ 1
n 6 12

-~ Dividing the interval (O, g) into 6 equal parts for the function f(x) = sinx

X 0 T 21 3T 4 5t

12 J12] 12 |12 | 12

NS




|y =f(x)]0]0.2588 ] 0.5]0.7071 | 0.866 | 0.9659 | 1 |

T
i. Tosolve foz sin x dx using trapezoidal rule

L h
foz sin x dx =;[yO + 21 +y, + Y3+ Y. +¥s) + yel

= Z.~[0+2(0.2588 + 0.5 + 0.7071 + 0.866 + 0.9659) + 1]

« J2sinxdx = 0.9943 using trapezoidal rule.
u 1
ii. Tosolve [Zsinxdx using Simpson’s - rule

z h
Jg sinxdx = [(yo + y6) + 4(y1 +y3 +y5) +2(v2 + 4]

T 1

=—.-[(0+ 1)+ 4(.2588 +.7071 + .9659) + 2(0.5 + .866)]

12 '3
fog sinx dx = 1.000004 using Simpson’s é rule

Y3
= . . . 3
iii. Tosolve foz sin x dx using Simpson’s . rule

z . h
foz sinx dx = 3; [((Vo +Y6) + 31 +y2 + Y4 +¥5) +2(y3)]

T

S g[(o + 1) + 3(0.2588 + .5 + .866 + .9659) + 2(0.7071)]

12
f05 sinx dx = 1.00004 using Simpson’s Z rule

1

Examplell Evaluate fol_'; - dx using

+log x
. : o , 1 . , 3 :
i. Trapezoidal rule ii. Simpson’s g rule iii. Simpson’s 5 rule, takingn = 8

1.3-.0.5

Solution: Takingn =8, h = = 0.1

1

= Dividing the interval (0.5,1.3) into 8 equal parts for f(x) =

1+logx

x 0506 /07 ]08]09 1|11 |12 13
f(x)[3.26/2.04]155[1.29|1.12|1]0.91)0.89|0.79

1
+logx

. 1.3 . .
i. Tosolve fos - dx using trapezoidal rule

1.3 1 h
fO.S 1+logx dx = E[yO +20n ty, + -+ y7) + vl

= 02—1 [3.26 + 2(2.04 + 1.55 + 1.29 + 1.12 + 1 + .91 + .89) +.79]
= 0.05[21.65] = 1.0825
“ f01'3 L _dx =1.0825 using trapezoidal rule.

5 1+logx

1
+logx

s 1.3 . . 1
ii. To solvef0 5 7 dx using Simpson’s 3 rule



1.3 1 h
J; dx = Z[(o +¥s) + 41 + Y3 + ¥s +¥7) + 22 + 34 + 6]

0.5 1+logx

= 2 [(3.26 +.79) + 4(2.04 + 1.29 + 1+ .89) + 2(1.55 + 1.12 + .91)]
= 2= [32.09] = 1.070

13 1 ) _ 1
. fo.s Ttogx dx = 1.070 using Simpson’s 2 rule

. , 3 . . . .
iii. Simpson’s 5 rule is not applicable, as n is not a multiple of 3

Examplel2 Evaluate fge“’sxdx up to 4 decimal places, using trapezoidal rule.

s

Solution: Taking n=3,i.e. h = % - %

O T T T
x 6 3 2
y=f(x) 271828 2.37744 1.64872 1

By trapezoidal rule

[vo +2(y1 + ¥2) + ¥3l
[2.71828 + 2(2.37744 + 1.64872) + 1]

11.7706] = 3.0815

T
foz eCoSX Jy =

oldAnv|>
|~

E
1 N

1

« [Zec*dx = 3.0815 using trapezoidal rule

N

Examplel3 From the following table, find the area bounded by the curve and
x — axis, between the ordinates x = 7.47 to x = 7.52.

x | 7.47]7.48[7.49]750] 751752
y = f(x)|1.93]195/1.98 201203206

. . , 1 . , 3 .
Solution: As n =15, Simpson’s 3 rule Simpson’s . rules are not applicable.

Applying trapezoidal rule with h = 0.01

[y27 fdx = 22[1.93 + 2(1.95 + 1.98 + 2.01 + 2.03) + 2.06]

7
= 0.005[19.93] = 0.09965 square units
Examplel4 The velocity v of an airplane which starts from rest is given at fixed
intervals of time t as shown:

t (minutes) |2| 4 |6 |8 (1012|1416 |18 |20

v=F |gl17]24]28(30]20]12] 6| 2| 0
(km/minutes)

Estimate the approximate distance covered in 20 minutes.
Solution: Since the airplane starts from rest, its initial velocity is zero. So the

time/velocity relationship may be tabulated as:
t(minutes)y 0 2 4 6 8 10 12 14 16 18 20




v=F(1) 5 g 17 24 28 30 20 12 6 2 0
(km/minutes)

Let S be the distance covered at any instant of time t,
Thenv == or dS=vdt
-~ Distance covered in 20 minutes is given by:
S = fozo ds = fozov dt = %[(v0 + v10) + 4(vy + V3 + Vs + v, + V)
2(vy, + vy + vg + vg)]
Applying Simpson’s é rulewithh = 2,asn =10
=>S5S==[(0+0)+4(8+24+30+12+2)+2(17 + 28+ 20 + 6)]
- 5§ =297.33 km

wIN

Examplel5 A solid of revolution is formed by rotating about x — axis, the area
between x — axis, the line x = 0 and a curve through the points with the
following coordinates:

X 0 025 0.50 0.75 1
y=f(x) 1 05846 0.5586 0.5085 0.7328
Estimate the volume of solid formed, giving the answer upto 3 decimal places.

Solution: Volume of solid formed by revolving the curve y = f(x) between the
. _ _ e _ (b __ >
ordinates x = a and y = b along x — axis isgivenby V = fa my“dx
By Simpson’s § rule with h = 0.25,asn = 4

V= yide =2y + yH) + 407 +yD) +203)]
=V = —{[17 + (0.7328)%] + 4[(0.5846)* + (0.5085)°] + 2[(0.5586)*]}
= Z[1.5370 + 4(0.60033) + 2(0.31203)] = 1.944



