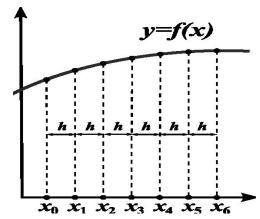
Finite Differences

6.1 Introduction

For a function y = f(x), finite differences refer to changes in values of y (dependent variable) for any finite (equal or unequal) variation in x (independent variable).

In this chapter, we shall study various differencing techniques for equal deviations in values of x and associated differencing operators; also their applications will be extended for finding missing values of a data and series summation.



6.2 Shift or Increment Operator (E)

Shift (Increment) operator denoted by 'E' operates on f(x) as Ef(x) = f(x + h)Or $Ey_x = y_{x+h}$, where 'h' is the step height for equi-spaced data points.

Clearly effect of the shift operator *E* is to shift the function value to the next higher value f(x + h) or y_{x+h}

Also $E^2 f(x) = E(Ef(x)) = Ef(x+h) = f(x+2h)$ $\therefore E^n f(x) = f(x+nh)$

Moreover $E^{-1}f(x) = f(x - h)$, where E^{-1} is the inverse shift operator.

6.3 Differencing Operators

If y_0 , y_1 , y_2 , ..., y_n be the values of y for corresponding values of x_0 , x_1 , x_2 , ..., x_n , then the differences of y are defined by $(y_1 - y_0)$, $(y_2 - y_1)$, ..., $(y_n - y_{n-1})$, and are denoted by different operators discussed in this section.

6.3.1 Forward Difference Operator (Δ)

Forward difference operator ' Δ ' operates on y_x as $\Delta y_x = y_{x+1} - y_x$ Or $\Delta f(x) = f(x+h) - f(x)$, where *h* is the height of differencing. $\therefore \Delta y_0 = y_1 - y_0$ $\Delta y_1 = y_2 - y_1$ \vdots $\Delta y_n = y_{n+1} - y_n$ Also $\Delta^2 y_0 = \Delta y_1 - \Delta y_0 = (y_2 - y_1) - (y_1 - y_0) = y_2 - 2y_1 + y_0$ \vdots $\Delta^n y_0 = y_n - {}^n C_1 y_{n-1} + {}^n C_2 y_{n-2} - \dots + (-1)^{n-1} {}^n C_{n-1} y_1 + (-1)^n y_0$

Generalizing $\Delta^n y_r = y_{n+r} - {}^n C_1 y_{n+r-1} + {}^n C_2 y_{n+r-2} - \dots + (-1)^r y_r$

Here Δ^n is the n^{th} order forward difference; Table 6.1 shows the forward differences of various orders.

x	у	Δ	Δ^2	Δ^3	Δ^4	Δ^5
x _o	<i>y</i> _o	Δy_o	$\Lambda^2 v$			
<i>x</i> ₁	y_1	Δy_1	$\Delta^2 y_o$	$\Delta^3 y_o$	·····	
<i>x</i> ₂	y ₂	Δy_2	$\Delta^2 y_1$	$\Delta^3 y_1$	$\Delta^4 y_0$	$\Delta^5 y_0$
<i>x</i> ₃	<i>y</i> ₃	Δy_3	$\Delta^2 y_2$	$\Delta^3 y_2$	$\Delta^4 y_1$	- 90
x_4	y_4	Δy_3 Δy_4	$\Delta^2 y_3$	- <i>y</i> ₂		
r -	V-	цу ₄				

Table 6.1 Forward Differences

The arrow indicates the direction of differences from top to bottom. Differences in each column notate difference of two adjoining consecutive entries of the previous column.

Relation between Δ and *E*

 Δ and *E* are connected by the relation $\Delta \equiv E - 1$ Proof: we know that $\Delta y_n = y_{n+1} - y_n$ $= Ey_n - y_n$ $\Rightarrow \Delta y_n = (E - 1) y_n$ $\Rightarrow \Delta \equiv E - 1 \text{ or } E \equiv 1 + \Delta$

Properties of operator ' Δ '

- $\Delta C = 0$, *C* being a constant
- $\Delta C f(x) = C f(x)$
- $\Delta[af(x) \pm bg(x)] = a \Delta f(x) \pm b \Delta g(x)$
- $\Delta[f(x)g(x)] = f(x+h)\Delta g(x) + g(x)\Delta f(x), f \& g \text{ may be interchanged}$
- $\Delta\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\Delta f(x) f(x)\Delta g(x)}{g(x+h)g(x)}$

Result 1: The n^{th} differences of a polynomial of degree '*n*' are constant and all higher order differences are zero.

Proof: Consider the polynomial f(x) of n^{th} degree

 $f(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_{n-1} x + a_n$

First differences of the polynomial f(x) are calculated as:

$$\Delta f(x) = f(x+h) - f(x)$$

= $a_0[(x+h)^n - x^n] + a_1[(x+h)^{n-1} - x^{n-1}] + \dots + a_{n-1}[(x+h) - x]$
= $a_0nh x^{n-1} + a'_1 x^{n-1} + a'_2 x^{n-2} + \dots + a'_{n-1}h + a'_n$
where $a'_1, a'_2, \dots, a'_{n-1}, a'_n$ are new constants

 \Rightarrow First difference of a polynomial of degree *n* is a polynomial of degree (n-1)

Similarly $\Delta^2 f(x) = \Delta f(x+h) - \Delta f(x)$

$$= a_0 n(n-1)h^2 x^{n-2} + a_1'' x^{n-3} + \dots + a_n''$$

: Second difference of a polynomial of degree n is a polynomial of degree (n-2)

Repeating the above process $\Delta^n f(x) = a_0 n(n-1) \dots 2.1 h^n x^{n-n}$

 $\Rightarrow \Delta^n f(x) = a_0 n! h^n$ which is a constant

 $\therefore n^{th}$ Difference of a polynomial of degree *n* is a polynomial of degree zero.

Thus $(n + 1)^{th}$ and higher order differences of a polynomial of n^{th} degree are all zero.

> The converse of above result is also true, i.e. if the n^{th} difference of a polynomial given at equally spaced points are constant then the function is a polynomial of degree 'n'.

6.3.2 Backward Difference Operator (∇)

Backward difference operator ' ∇ ' operates on y_n as $\nabla y_n = y_n - y_{n-1}$

: The differences $(y_1 - y_0)$, $(y_2 - y_1)$, ..., $(y_n - y_{n-1})$ when denoted by $\nabla y_1, \nabla y_2, ..., \nabla y_n$ are called first backward differences.

Also $\nabla^2 y_n = \nabla y_n - \nabla y_{n-1}$, $\nabla^3 y_n = \nabla^2 y_n - \nabla^2 y_{n-1}$ denote second and third backward differences respectively.

Table 6.2 shows the backward differences of various orders.

x	у	∇	∇^2	∇ ³	∇^4	∇^5
x _o	y_o	∇y_1				
<i>x</i> ₁	y_1	∇y_2	$\nabla^2 y_2$	$\nabla^3 y_3$		
<i>x</i> ₂	y ₂		$\nabla^2 y_3$	$\nabla^3 y_4$	$ abla^4 y_4$	$\nabla^5 y_5$
<i>x</i> ₃	y_3	∇y_3	$\nabla^2 y_4$		$\nabla^4 y_5$	v y₅
<i>x</i> ₄	y_4	$ abla y_4$	$\nabla^2 y_5$	$\nabla^3 y_5$		
<i>x</i> ₅	y_5	v <i>y</i> ₅				

Table 6.2 Backward Differences

The arrow indicates the direction of differences from bottom to top. Differences in each column notate difference of two adjoining consecutive entries of the previous column, i.e. $\nabla y_1 = y_1 - y_o$, $\nabla^2 y_2 = \nabla y_2 - \nabla y_1$, ..., $\nabla^5 y_5 = \nabla^4 y_5 - \nabla^4 y_4$. **Relation between \nabla and E**

 ∇ and *E* are connected by the relation $\nabla \equiv \overline{1 - E^{-1}}$ Proof: we know that $\nabla y_n = y_n - y_{n-1}$ $= v_n - E^{-1}v_n$

$$\Rightarrow \nabla y_n = (1 - E^{-1}) y_n$$
$$\Rightarrow \nabla \equiv 1 - E^{-1}$$

6.3.3 Central Difference Operator (δ)

central differences respectively as shown in Table 6.3.

Central difference operator ' δ ' operates on y_n as $\delta y_n = y_{n+\frac{1}{2}} - y_{n-\frac{1}{2}}$: The differences $(y_1 - y_0)$, $(y_2 - y_1)$, ..., $(y_n - y_{n-1})$ when denoted by $\delta y_{\frac{1}{2}}, \delta y_{\frac{3}{2}}, \dots, \delta y_{n-\frac{1}{2}}$ are called first central differences. Also $\delta^2 y_n = \delta y_{n+\frac{1}{2}} - \delta y_{n-\frac{1}{2}}$, $\delta^3 y_n = \delta^2 y_{n+\frac{1}{2}} - \delta^2 y_{n-\frac{1}{2}}$ denote second and third

x	у	δ	δ^2	δ^3	δ^4	δ^5
xo	y_o	S				
<i>x</i> ₁	${\mathcal Y}_1$	$\delta y_{\frac{1}{2}}$ $\delta y_{\frac{3}{2}}$	$\delta^2 y_1$	$\delta^3 y_{\frac{3}{2}}$		
<i>x</i> ₂	У ₂	$\delta y_{\frac{5}{2}}$	$\delta^2 y_2$	$\delta^3 y_{\frac{5}{2}}$	$\delta^4 y_2$	$\delta^5 y_{\frac{5}{2}}$
<i>x</i> ₃	\mathcal{Y}_3	$\delta y_{\frac{7}{2}}$	$\delta^2 y_3$	$\overline{2}$ $\delta^3 y_{\frac{7}{2}}$	$\delta^4 y_3$	2
x_4	y_4	$\delta y_{\frac{9}{2}}$	$\delta^2 y_4$	2		
x_5	${\mathcal Y}_5$	2				

Table 6.3 Central Differences

Central differences in each column notate difference of two adjoining consecutive entries of the previous column, i.e. $\delta y_{\frac{1}{2}} = y_1 - y_o, \dots, \delta^5 y_{\frac{5}{2}} = \delta^4 y_3 - \delta^4 y_2.$

<u>**Relation between \delta and E**</u> δ and E are connected by the relation $\delta \equiv E^{\frac{1}{2}} - E^{-\frac{1}{2}}$ Proof: we know that $\delta y_n = y_{n+\frac{1}{2}} - y_{n-\frac{1}{2}}$

$$= E^{\frac{1}{2}}y_n - E^{-\frac{1}{2}}y_n$$

$$\Rightarrow \delta y_n = \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)y_n$$

$$\therefore \delta \equiv \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$$

Observation: It is only the notation which changes and not the difference.

$$\therefore y_1 - y_o = \Delta y_0 = \nabla y_1 = \delta y_{\frac{1}{2}}$$

6.3.4 Averaging Operator (μ)

Averaging operator ' μ ' operates on y_x as $\mu y_x = \frac{1}{2} \left(y_{x+\frac{h}{2}} + y_{x-\frac{h}{2}} \right)$

Or $\mu f(x) = \frac{1}{2} \left(f\left(x + \frac{h}{2}\right) + f\left(x - \frac{h}{2}\right) \right)$, 'h' is the height of the interval. **Relation between \mu and E**

We know that
$$\mu y_n = \frac{1}{2} \left(y_{n+\frac{h}{2}} + y_{n-\frac{h}{2}} \right)$$

 $= \frac{1}{2} \left(E^{\frac{1}{2}} y_n + E^{-\frac{1}{2}} y_n \right)$
 $\Rightarrow \mu y_n = \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right) y_n$
 $\therefore \mu \equiv \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right)$

Result 2: Relation between *E* and *D*, where $D \equiv \frac{d}{dx}$

We know $y(x + h) = y(x) + h y'(x) + \frac{h^2}{2!} y''(x) + \dots$ By Taylor's theorem $= y(x) + h Dy(x) + \frac{h^2}{2!} D^2 y(x) + \dots$ $= \left(1 + hD + \frac{h^2}{2!} D^2 + \dots\right) y(x)$ $\Rightarrow E y(x) = e^{hD} y(x)$ $\therefore E = e^{hD}, D \equiv \frac{d}{dx}$

Result 3: Relation between Δ and D, where $D \equiv \frac{d}{dx}$ We know that $\Delta \equiv E - 1$

$$\Rightarrow \Delta \equiv e^{hD} - 1 \qquad \qquad \because E = e^{hD}$$

Result 4: Relation between ∇ and D, where $D \equiv \frac{d}{dx}$

We know that $\nabla \equiv 1 - E^{-1} = 1 - e^{-hD}$ $\therefore E = e^{hD}$

Result 5: Relation between Δ and ∇

We know that $E \equiv 1 + \Delta$... ①

Also
$$E^{-1} \equiv 1 - \nabla$$

 $\Rightarrow E \equiv \frac{1}{1 - \nabla} \qquad \cdots 2$
 $\Rightarrow 1 + \Delta \equiv \frac{1}{1 - \nabla} \qquad \text{From (1) and (2)}$
 $\Rightarrow \Delta \equiv \frac{1}{1 - \nabla} - 1$
 $\Rightarrow \Delta \equiv \frac{\nabla}{1 - \nabla}$

Result 6: Relation between μ , δ and E

We have $\mu \equiv \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right)$

Also
$$\delta \equiv \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$$
$$\Rightarrow \quad \mu \delta \equiv \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right) \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$$
$$\Rightarrow \quad \mu \delta \equiv \frac{1}{2} \left(E - E^{-1}\right)$$

Result 7: Relation between μ , δ , Δ and ∇

We have $\mu \delta \equiv \frac{1}{2} (E - E^{-1}) = \frac{1}{2} [(1 + \Delta) - (1 - \nabla)]$ $\Rightarrow \quad \mu \delta \equiv \frac{1}{2} (\Delta + \nabla)$

Result 8: $\Delta^n y_r = \nabla^n y_{n+r}$

We have
$$\Delta^n y_r = (E-1)^n y_r$$
 $\therefore \Delta = E-1$
 $= y_{n+r} - {}^n C_1 y_{n+r-1} + {}^n C_2 y_{n+r-2} - \dots + (-1)^r y_r$
 $= (E^n - {}^n C_1 E^{n-1} + {}^n C_2 E^{n-2} - \dots + (-1)^n) y_r$
 $= E^n y_r - {}^n C_1 E^{n-1} y_r + {}^n C_2 E^{n-2} y_r - \dots + (-1)^n y_r$
 $= y_{n+r} - {}^n C_1 y_{n+r-1} + {}^n C_2 y_{n+r-2} - \dots + (-1)^n y_r$
Also $\nabla^n y_{n+r} = (1 - E^{-1})^n y_{n+r}$ $\therefore \nabla \equiv 1 - E^{-1}$
 $= (1 - {}^n C_1 E^{-1} + {}^n C_2 E^{-2} - \dots + (-1)^n E^{-n}) y_{n+r}$
 $= y_{n+r} - {}^n C_1 y_{n+r-1} + {}^n C_2 y_{n+r-2} - \dots + (-1)^n y_r$
 $\therefore \Delta^n y_r = \nabla^n y_{n+r}$

Example 1 Evaluate the following:

i.
$$\Delta e^{x}$$
 ii. $\Delta^{2}e^{x}$ iii. $\Delta tan^{-1}x$ iv. $\Delta \left(\frac{x+1}{x^{2}-3x+2}\right)$ v. $\Delta f_{k}^{2} = (f_{k} + f_{k+1})\Delta f_{k}$
Solution: i. $\Delta e^{x} = e^{x+h} - e^{x} = e^{x}(e^{h} - 1)$
 $\Delta e^{x} = e^{x}(e-1)$, if $h = 1$
ii. $\Delta^{2}e^{x} = \Delta(\Delta e^{x})$
 $= \Delta [e^{x}(e^{h} - 1)]$
 $= (e^{h} - 1) \Delta e^{x}$
 $= (e^{h} - 1) [e^{x+h} - e^{x}]$
 $= (e^{h} - 1) e^{x}(e^{h} - 1)$
 $= e^{x} (e^{h} - 1)^{2}$
iii. $\Delta tan^{-1}x = tan^{-1}(x+h) - tan^{-1}x$
 $= tan^{-1} \left(\frac{x+h-x}{1+(x+h)x}\right)$
 $= tan^{-1} \frac{h}{1+(x+h)x}$
iv. $\Delta \left(\frac{x+1}{x^{2}-3x+2}\right) = \Delta \left(\frac{x+1}{(x-1)(x-2)}\right)$

$$= \Delta \left(\frac{-2}{x-1} + \frac{3}{x-2}\right) = \Delta \left(\frac{-2}{x-1}\right) + \Delta \left(\frac{3}{x-2}\right)$$
$$= -2 \left(\frac{1}{x+1-1} - \frac{1}{x-1}\right) + 3 \left(\frac{1}{x+1-2} - \frac{1}{x-2}\right)$$
$$= -2 \left(\frac{1}{x} - \frac{1}{x-1}\right) + 3 \left(\frac{1}{x-1} - \frac{1}{x-2}\right)$$
$$= -\frac{(x+4)}{x(x-1)(x-2)}$$

v.
$$\Delta f_k^2 = f_{k+1}^2 - f_k^2 = (f_{k+1} + f_k)(f_{k+1} - f_k) = (f_k + f_{k+1})\Delta f_k$$

Example 2 Evaluate the following:

i.
$$\Delta e^x \log 2x$$
 ii. $\Delta \left(\frac{x^2}{\cos 2x}\right)$

Solution: i. Let $f(x) = e^x$ and $g(x) = \log 2x$

We have
$$\Delta[f(x)g(x)] = f(x+h)\Delta g(x) + g(x)\Delta f(x)$$

$$\therefore \Delta e^{x} \log 2x = e^{x+h}\Delta \log 2x + \log 2x \Delta e^{x}$$

$$= e^{x+h}[\log 2(x+h) - \log 2x] + \log 2x [e^{x+h} - e^{x}]$$

$$= e^{x}e^{h} \log \left(1 + \frac{h}{x}\right) + e^{x} \log 2x [e^{h} - 1]$$

$$= e^{x} \left[e^{h} \log \left(1 + \frac{h}{x}\right) + \log 2x [e^{h} - 1]\right]$$
ii. Let $f(x) = x^{2}$ and $g(x) = \cos 2x$
We have $\Delta \left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\Delta f(x) - f(x)\Delta g(x)}{g(x+h)g(x)}$

$$= \frac{\cos 2x [(x+h)^{2} - x^{2}] - x^{2} [\cos 2(x+h) - \cos 2x]}{\cos 2(x+h) \cos 2x}$$

$$= \frac{(h^{2} + 2hx) \cos 2x + 2x^{2} \sin (2x+h) \sin h}{\cos 2(x+h) \cos 2x}$$
Example 3 Evaluate $\Delta^{4}[(1 - 2x)(1 - 3x)(1 - 4x)(1 - x)]$, where interval of differencing is one.
Solution: $\Delta^{4}[(1 - 2x)(1 - 3x)(1 - 4x)(1 - x)]$

$$= \Delta^{4}[24x^{4} + \dots + 1] = 24.4!. 1^{4} = 576$$

$$\therefore \Delta^{n} f(x) = a_{0}n!h^{n} \text{ and } \Delta^{4}x^{n} = 0 \text{ when } n < 4$$
Example 4 Prove that $\Delta^{3}y_{3} = \nabla^{3}y_{6}$

Solution:
$$\Delta^3 y_3 = (E-1)^3 y_3$$
 $\therefore \Delta = E-1$
= $(E^3 - 1 - 3E^2 + 3E)y_3$

$$= E^{3}y_{3} - y_{3} - 3E^{2}y_{3} + 3Ey_{3}$$

$$= y_{6} - y_{3} - 3y_{5} + 3y_{4}$$
Also $\nabla^{3}y_{6} = (1 - E^{-1})^{3}y_{6} \qquad \because \nabla \equiv 1 - E^{-1}$

$$= (1 - E^{-3} - 3E^{-1} + 3E^{-2})y_{6}$$

$$= y_{6} - y_{3} - 3y_{5} + 3y_{4}$$
Example 5 Prove that $\Delta + \nabla = \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$
Solution: L.H.S. $= \Delta + \nabla = (E - 1) + (1 - E^{-1})$

$$= E - E^{-1}$$
R.H.S. $= \frac{\Delta}{\nabla} - \frac{\nabla}{\Delta}$

$$= \frac{E^{-1}}{1 - E^{-1}} - \frac{1 - E^{-1}}{E - 1}$$

$$= \frac{(E^{-1})^{2} - (1 - E^{-1})^{2}}{(1 - E^{-1})(E - 1)}$$

$$= \frac{(E^{2} + 1 - 2E) - (1 + E^{-2} - 2E^{-1})}{E + E^{-1} - 2}$$

$$= \frac{(E + E^{-1})(E - E^{-1}) - 2(E - E^{-1})}{E + E^{-1} - 2}$$

$$= \frac{(E - E^{-1})(E + E^{-1} - 2)}{E + E^{-1} - 2}$$

$$= E - E^{-1} = \text{R.H.S.}$$
Example 6 Prove that $E = 1 + \frac{1}{2}\delta^{2} + \delta\sqrt{1 + \frac{1}{4}\delta^{2}}$

Solution: R.H.S. = $1 + \frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$ = $1 + \frac{1}{2}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^2 + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{1 + \frac{1}{4}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^2}$ $\therefore \delta \equiv E^{\frac{1}{2}} - E^{-\frac{1}{2}}$ = $1 + \frac{1}{2}(E + E^{-1} - 2) + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{1 + \frac{1}{4}(E + E^{-1} - 2)}$

$$= 1 + \frac{1}{2}(E + E^{-1} - 2) + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{\frac{1}{4}(E + E^{-1} + 2)}$$
$$= 1 + \frac{1}{2}(E + E^{-1} - 2) + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{\frac{1}{4}\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right)^{2}}$$
$$= 1 + \frac{1}{2}(E + E^{-1} - 2) + \frac{1}{2}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right)$$
$$= \frac{1}{2}(E + E^{-1}) + \frac{1}{2}(E - E^{-1}) = E = \text{L.H.S.}$$

Example 7 Prove that $\nabla = -\frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$

Solution: R.H.S.
$$= -\frac{1}{2}\delta^2 + \delta\sqrt{1 + \frac{1}{4}\delta^2}$$

 $= -\frac{1}{2}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^2 + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{1 + \frac{1}{4}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^2}$
 $\therefore \delta \equiv E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
 $= -\frac{1}{2}(E + E^{-1} - 2) + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{1 + \frac{1}{4}(E + E^{-1} - 2)}$
 $= -\frac{1}{2}(E + E^{-1} - 2) + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{\frac{1}{4}(E + E^{-1} + 2)}$
 $= -\frac{1}{2}(E + E^{-1} - 2) + \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\sqrt{\frac{1}{4}\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right)^2}$
 $= -\frac{1}{2}(E + E^{-1} - 2) + \frac{1}{2}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right)$
 $= -\frac{1}{2}(E + E^{-1} - 2) + \frac{1}{2}(E - E^{-1}) = 1 - E^{-1} = \nabla = \text{ L.H.S.}$

Example 8 Prove that (i) $\Delta - \nabla = \delta^2$ (ii) $\mu = \sqrt{1 + \frac{1}{4}\delta^2} = \left(1 + \frac{\Delta}{2}\right)(1 + \Delta)^{-\frac{1}{2}}$ Solution: (i) $\delta^2 = \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^2 = E + E^{-1} - 2 \quad \because \delta \equiv E^{\frac{1}{2}} - E^{-\frac{1}{2}}$ $= (E - 1) - (1 - E^{-1}) = \Delta - \nabla$ $\because E - 1 \equiv \Delta$ and $1 - E^{-1} = \Delta$ (ii) $\sqrt{1 + \frac{1}{4}\delta^2} = \sqrt{1 + \frac{1}{4}\left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)^2} \quad \because \delta \equiv \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}}\right)$ $= \sqrt{1 + \frac{1}{4}(E + E^{-1} - 2)}$ $= \sqrt{\frac{1}{4}\left(E^{\frac{1}{2}} + E^{-\frac{1}{2}}\right)^2}$

$$= \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right) = \mu \qquad \because \mu \equiv \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right)$$
Also $\left(1 + \frac{\Delta}{2} \right) (1 + \Delta)^{-\frac{1}{2}} = \left(1 + \frac{E-1}{2} \right) (1 + E - 1)^{-\frac{1}{2}}$
 $\therefore \Delta \equiv E - 1$
 $= \left(\frac{E+1}{2} \right) E^{-\frac{1}{2}}$
 $= \frac{1}{2} \left(E^{-\frac{1}{2}} + E^{\frac{1}{2}} \right) = \mu$
Example 9 Prove that (i) $\Delta \equiv E \nabla \equiv \nabla E = \delta E^{\frac{1}{2}}$ (ii) $E^{r} = \left(\mu + \frac{\delta}{2} \right)^{2r}$
Solution: (i) $E \nabla = E(1 - E^{-1}) = E - 1 = \Delta$
 $\nabla E = (1 - E^{-1})E = E - 1 = \Delta$
 $\delta E^{\frac{1}{2}} = \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}} \right) E^{\frac{1}{2}} = E - 1 = \Delta$
(ii) R.H.S. $= \left(\mu + \frac{\delta}{2} \right)^{2r} = \left(\frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right) + \frac{1}{2} \left(E^{\frac{1}{2}} - E^{-\frac{1}{2}} \right) \right)^{2r}$
 $\therefore \mu = \frac{1}{2} \left(E^{\frac{1}{2}} + E^{-\frac{1}{2}} \right)$ and $\delta \equiv E^{\frac{1}{2}} - E^{-\frac{1}{2}}$
 $= \left(\frac{1}{2} (2E^{\frac{1}{2}}) \right)^{2r} = (E^{\frac{1}{2}})^{2r} = E^{r} = L.H.S$

Example 10 Prove that (i) $D \equiv \frac{1}{h} \log E$ (iii) $hD \equiv \log(1 + \Delta) \equiv -\log(1 - \nabla)$

(iii)
$$\nabla^2 \equiv h^2 D^2 - h^3 D^3 + \frac{7}{12} h^4 D^4 + \cdots$$

Solution: (i) We know that $E \equiv e^{hD}$

$$\Rightarrow \log E \equiv \log e^{hD}$$

$$\Rightarrow \log E \equiv hd \log e$$

$$\Rightarrow D \equiv \frac{1}{h} \log E \qquad \because \log e = 1$$

(ii) $h D \equiv log E$ From relation (i)

$$\equiv \log(1 + \Delta) \qquad \qquad \because E \equiv 1 + \Delta$$

Also $h D \equiv \log E \equiv -\log E^{-1}$

$$\equiv -\log[(1 - \nabla)] \qquad \because \nabla \equiv 1 - E^{-1}$$

(iii) We know that $\nabla \equiv 1 - E^{-1}$

$$\Rightarrow \nabla \equiv 1 - \frac{1}{E}$$

$$= 1 - e^{-hD} \qquad \because E = e^{hD}$$

$$\Rightarrow \nabla = 1 - \left(1 - hd + \frac{h^2D^2}{2!} - \frac{h^3D^3}{3!} + \cdots\right)$$

$$\Rightarrow \nabla = hd - \frac{h^2D^2}{2!} + \frac{h^3D^3}{3!} + \cdots$$

$$\therefore \nabla^2 = \left(hd - \frac{h^2D^2}{2!} + \frac{h^3D^3}{3!} + \cdots\right)^2$$

$$\Rightarrow \nabla^2 = h^2D^2 + \left(\frac{h^2D^2}{2!}\right)^2 + \cdots - 2(hd)\left(\frac{h^2D^2}{2!}\right) + 2(hd)\left(\frac{h^3D^3}{3!}\right) - \cdots$$

$$\Rightarrow \nabla^2 = h^2D^2 - h^3D^3 + \left(\frac{h^4D^4}{4} + \frac{h^4D^4}{3}\right) - \cdots$$

$$\Rightarrow \nabla^2 = h^2D^2 - h^3D^3 + \frac{7}{12}h^4D^4 - \cdots$$

Remark: In order to prove any relation, we can express the operators (Δ, ∇, δ) in terms of fundamental operator E.

Example 11 Form the forward difference table for the function

 $f(x) = x^3 - 2x^2 - 3x - 1$ for x = 0, 1, 2, 3, 4. Hence or otherwise find $\Delta^3 f(x)$, also show that $\Delta^4 f(x) = 0$ **Solution:** f(0) = -1, f(1) = -5, f(2) = -7, f(3) = -1, f(4) = 19Constructing the forward difference table:

			. 7	. 2	. 1
<i>x</i>	f(x)	Δ	Δ^2	Δ^3	Δ^{4}
0	-1				
		-4			
1	-5		2		
		-2		6	
2	-7		8		0
		6		6	
3	-1		14		
		20			
4	19				

From the table, we see that $\Delta^3 f(x) = 6$ and $\Delta^4 f(x) = 0$ Note: Using the formula $\Delta^n f(x) = a_0 n! h^n$, $\Delta^3 f(x) = 1.3! \cdot 1^n = 6$

Also $\Delta^{n+1} f(x) = 0$ for a polynomial of degree $n, \therefore \Delta^4 f(x) = 0$

Example 12 If for a polynomial, five observations are recorded as: $y_0 = -8$, $y_1 = -6, y_2 = 22, y_3 = 148, y_4 = 492$, find y_5 .

Solution: $y_5 = E^5 y_0 = (1 + \Delta)^5 y_0$ $\therefore E \equiv 1 + \Delta$ = $y_0 + {}^5C_1 \Delta y_0 + {}^5C_2 \Delta^2 y_0 + {}^5C_3 \Delta^3 y_0 + {}^5C_4 \Delta^4 y_0 + \Delta^5 y_0$... (1)

x	у	Δ	Δ^2	Δ^3	Δ^4
<i>x</i> ₀	-8 ·····	2	*****		
<i>x</i> ₁	-6	28	26	72	
x_2	22	126	98	120	48
<i>x</i> ₃	148	344	218	120	
<i>x</i> ₄	492	011			

Constructing the forward difference table:

From table $\Delta y_0 = 2$, $\Delta^2 y_0 = 26$, $\Delta^3 y_0 = 72$, $\Delta^3 y_0 = 48$... (2) $\Rightarrow y_5 = -8 + 5(2) + 10(26) + 10(72) + 5(48) = 1222$ using (2) in (1)

6.4 Missing values of Data

Missing data or missing values occur when an observation is missing for a particular variable in a data sample. Concept of finite differences can help to locate the requisite value using known concepts of curve fitting.

To determine the equation of a line (equation of degree one), we need at least two given points. Similarly to trace a parabola (equation of degree two), at least three points are imperative. Thus we essentially require (n + 1) known observations to determine a polynomial of n^{th} degree.

To find missing values of data using finite differences, we presume the degree of the polynomial by the number of known observations and use the result $\Delta^{n+1} f(x) = 0$ for a polynomial of degree *n*.

Example 13 Use the concept of missing data to find y_5 if $y_0 = -8$, $y_1 = -6$, $y_2 = 22$, $y_3 = 148$, $y_4 = 492$

x	У	Δ	Δ^2	Δ^{3}	Δ^{4}	Δ^5
x_o	-8					
		2				
x_1	-6		26			
		28		72		
x_2	22		98		48	
		126		120		$y_5 - 1222$
x_3	148		218		$y_5 - 1174$	
		344		$y_5 - 1054$		
x_4	492		$y_5 - 836$			
		$y_5 - 492$				
x_5	y_5					
5	25					

Solution: Constructing the forward difference table taking y_5 as missing value

Since 5 observations are known, let us assume that the polynomial represented by given data is of 4^{th} degree. $\therefore \Delta^5 y = 0 \Rightarrow y_5 - 1222 = 0$ or $y_5 = 1222$

Example 14 Find the missing values in the following table

x	0	5	10	15	20	25
f(x)	6	?	13	17	22	?

Solution: Since there are 4 known values of f(x) in the given data, let us assume the polynomial represented by the given data to be of 3^{rd} degree.

Constructing the forward difference table taking missing values as a and b.

x	у	Δ	Δ^2	Δ^{3}	Δ^4
0	6				
		<i>a</i> – 6			
5	а		19 – 2a		
		13 – a		3a – 28	
10	13		a – 9		38 - 4a
		4		10 - a	
15	17		1		a + b - 38
		5		b - 28	
20	22		b - 27		
		b - 22			
25	b				

Since the polynomial represented by the given data is considered to be of 3^{rd} degree, 4^{th} and higher order differences are zero i.e. $\Delta^4 y = 0$

 $\therefore 38 - 4a = 0$ and a + b - 38 = 0

Solving these two equations, we get a = 9.5 b = 28.5

6.5 Finding Differences Using Factorial Notation

We can conveniently find the forward differences of a polynomial using factorial notation.

6.5.1 Factorial Notation of a Polynomial

A product of the form $x(x-1)(x-2) \dots (x-r+1)$ is called a factorial polynomial and is denoted by $[x]^r$

∴
$$[x] = x$$

 $[x]^2 = x(x-1)$
 $[x]^3 = x(x-1)(x-2)$
∴
 $[x]^n = x(x-1)(x-2) ... (x-n+1)$
In case, the interval of differencing is *h*, then
 $[x]^n = x(x-h)(x-h) ... (x-n-1 h)$

The results of differencing $[x]^r$ are analogous to that differentiating x^r

$$\Delta[x]^{n} = n[x]^{n-1} \Delta^{2}[x]^{n} = n(n-1)[x]^{n-2} \Delta^{3}[x]^{n} = n(n-1)(n-2)[x]^{n-3} \vdots \Delta^{n}[x]^{n} = n(n-1)(n-2) \dots 3.2.1 = n! \Delta^{n+1}[x]^{n} = 0 Also $\frac{1}{\Delta}[x] = \frac{[x]^{2}}{2}, \frac{1}{\Delta}[x]^{2} = \frac{[x]^{3}}{3} \text{ and so on} \frac{1}{\Delta^{2}}[x] = \frac{1}{\Delta} \left[\frac{[x]^{2}}{2} \right] = \frac{[x]^{3}}{6} :$$$

Remark:

- i. Every polynomial of degree *n* can be expressed as a factorial polynomial of the same degree and vice-versa.
- ii. The coefficient of highest power of x and also the constant term remains unchanged while transforming a polynomial to factorial notation.

Example15 Express the polynomial $2x^2 + 3x + 1$ in factorial notation. Solution: $2x^2 - 3x + 1 = 2x^2 - 2x + 5x + 1$

$$= 2x(x-1) + 5x + 1$$
$$= 2[x]^{2} + 5[x] + 1$$

Example16 Express the polynomial $2x^3 - x^2 + 3x - 4$ in factorial notation. Solution: $2x^3 - x^2 + 3x - 4 = 2[x]^3 + A[x]^2 + B[x] - 4$

Using remarks i and ii
=
$$2x(x - 1)(x - 2) + Ax(x - 1) + Bx - 4$$

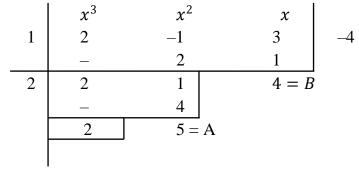
= $2x^3 + (A - 6)x^2 + (-A + B + 4)x - 4$

Comparing the coefficients on both sides

$$A - 6 = -1, \quad -A + B + 4 = 3$$

⇒ A = 5, B = 4
∴ 2x³ - x² + 3x - 4 = 2[x]³ + 5[x]² + 4[x] - 4

We can also find factorial polynomial using synthetic division as shown: Coefficients A and B can be found as remainders under x² and x columns

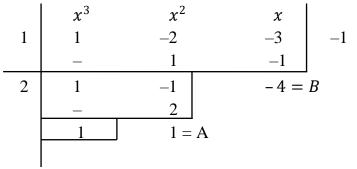


Example 17 Find $\Delta^3 f(x)$ for the polynomial $f(x) = x^3 - 2x^2 - 3x - 1$ Also show that $\Delta^4 f(x) = 0$

Solution: Finding factorial polynomial of f(x) as shown:

Let $x^3 - 2x^2 - 3x - 1 = [x]^3 + A[x]^2 + B[x] - 1$

Coefficients A and B can be found as remainders under x^2 and x columns



$$\begin{array}{ll} \therefore & f(x) = x^3 - 2x^2 - 3x - 1 &= [x]^3 + [x]^2 - 4[x] - 1 \\ \Delta^3 f(x) = & \Delta^3 [[x]^3 + [x]^2 - 4[x] - 1 &] \\ &= 3! + 0 = 6 & \because & \Delta^n [x]^n = n! \text{ and } \Delta^{n+1} [x]^n = 0 \\ \text{Also } & \Delta^4 f(x) = & \Delta^4 [[x]^3 + [x]^2 - 4[x] - 1 &] = 0 \end{array}$$

Note: Results obtained are same as in Example 11, where we have used forward difference table to compute the differences.

Example 18: Obtain the function whose first difference is $8x^3 - 3x^2 + 3x - 1$ **Solution:** Let f(x) be the function whose first difference is $8x^3 - 3x^2 + 3x - 1$

$$\Rightarrow \Delta f(x) = 8x^3 - 3x^2 + 3x - 1$$

Let $8x^3 - 3x^2 + 3x - 1 = 8[x]^3 + A[x]^2 + B[x] - 1$

Coefficients A and B can be found as remainders under x^2 and x columns

$$\frac{1}{2} \begin{bmatrix} x^3 & x^2 & x \\ 8 & -3 & 3 \\ - & 8 & 5 \\ \hline 2 & 8 & 5 \\ - & 16 \\ \hline 8 & 21 = A \end{bmatrix} -1$$

$$\therefore \Delta f(x) = 8x^3 - 3x^2 + 3x - 1 = 8[x]^3 + 21[x]^2 + 8[x] - 1$$

$$f(x) = \frac{1}{4}[8[x]^3 + 21[x]^2 + 8[x] - 1]$$

$$= \frac{8[x]^4}{4} + \frac{21[x]^3}{3} + \frac{8[x]^2}{2} - [x] \quad \because \frac{1}{4}[x] = \frac{[x]^2}{2}, \frac{1}{4}[x]^2 = \frac{[x]^3}{3}, \dots$$

$$= 2[x]^4 + 7[x]^3 + 4[x]^2 - [x]$$

$$= 2x(x - 1)(x - 2)(x - 3) + 7x(x - 1)(x - 2) + 4x(x - 1) - x$$

$$= x[2(x - 1)(x - 2)(x - 3) + 7(x - 1)(x - 2) + 4(x - 1) - 1]$$

$$= x[2x^{3} - 5x^{2} + 5x - 3] = 2x^{4} - 5x^{3} + 5x^{2} - 3x$$

-x

 $\Rightarrow f(x) = 2x^4 - 5x^3 + 5x^2 - 3x$

6.6 Series Summation Using Finite Differences

The method of finite differences may be used to find sum of a given series by applying the following algorithm:

- 1. Let the series be represented by $u_0, u_1, u_2, u_3, ...$
- 2. Use the relation $u_r = E^r u_0$ to introduce the operator E in the series.
- 3. Replace *E* by Δ by substituting $E \equiv 1 + \Delta$ and find the sum the series by any of the applicable methods like sum of a G.P., exponential or logarithmic series or by binomial expansion and operate term by term on u_0 to find the required sum.

Example 19 Prove the following using finite differences:

i.
$$u_0 + u_1 \frac{x}{1!} + u_2 \frac{x^2}{2!} + \dots = e^x \left[u_0 + x \frac{\Delta u_0}{1!} + x^2 \frac{\Delta^2 u_0}{2!} + \dots \right]$$

ii. $u_0 - u_1 + u_2 - u_3 + \dots = \frac{1}{2} u_0 - \frac{1}{4} \Delta u_0 + \frac{1}{8} \Delta^2 u_0 - \dots$
Solution: i. $u_0 + u_1 \frac{x}{1!} + u_2 \frac{x^2}{2!} + \dots = u_0 + \frac{x}{1!} E u_0 + \frac{x^2}{2!} E^2 u_0 + \dots$
 $= \left[1 + \frac{xE}{1!} + \frac{x^2 E^2}{2!} u_0 + \dots \right] u_0$
 $= e^{xE} u_0 = e^{x(1+\Delta)} u_0$
 $= e^x e^{x\Delta} u_0$
 $= e^x \left[u_0 + x \frac{\Delta u_0}{1!} + x^2 \frac{\Delta^2 u_0}{2!} + \dots \right] u_0$
 $= e^x \left[u_0 + x \frac{\Delta u_0}{1!} + x^2 \frac{\Delta^2 u_0}{2!} + \dots \right]$
ii. $u_0 - u_1 + u_2 - u_3 + \dots = u_0 - E u_0 + E^2 u_0 - E^3 u_0 + \dots$
 $= \left[1 - E + E^2 - E^3 + \dots \right] u_0$
 $= \left[1 + E \right]^{-1} u_0$
 $= \left[2 + \Delta \right]^{-1} u_0$
 $= \left[2 + \Delta \right]^{-1} u_0$
 $= \frac{1}{2} \left[1 - \frac{\Delta}{2} + \frac{\Delta^2}{4} - \dots \right] u_0$

Example 20 Sum the series 1^2 , 2^2 , 3^2 ,..., n^2 using finite differences. **Solution:** Let the series 1^2 , 2^2 , 3^2 ,..., n^2 be represented by u_0 , u_1 , u_2 ,..., u_{n-1}

$$: S = u_0 + u_1 + u_2 + \dots + u_{n-1} \Rightarrow S = u_0 + Eu_0 + E^2 u_0 + \dots + E^{n-1} u_0 = (1 + E + E^2 + \dots + E^{n-1}) u_0$$

$$= \frac{1-E^n}{1-E} u_0 = \frac{E^n - 1}{E-1} u_0 \qquad \because S_n = a \frac{1-r^n}{1-r}$$

$$\Rightarrow S = \frac{(1+\Delta)^n - 1}{(1+\Delta) - 1} u_0$$

$$= \frac{1}{\Delta} \left\{ \left[1 + n\Delta + \frac{n(n-1)}{2!} \Delta^2 + \frac{n(n-1)(n-2)}{3!} \Delta^3 + \cdots \right] - 1 \right\} u_0$$

$$= nu_0 + \frac{n(n-1)}{2!} \Delta u_0 + \frac{n(n-1)(n-2)}{3!} \Delta^2 u_0 + \cdots$$
Now $u_0 = 1^2 = 1$

$$\Delta u_0 = u_1 - u_0 = 2^2 - 1^2 = 3$$

$$\Delta^2 u_0 = \Delta u_1 - \Delta u_0 = u_2 - 2u_1 + u_0 = 3^2 - 2(2^2) + 1^2 = 2$$

$$\Delta^3 u_0, \ \Delta^4 u_0 \dots \text{ are all zero as given series is an expression of degree 2$$

$$\therefore S = n + \frac{n(n-1)}{2!} (3) + \frac{n(n-1)(n-2)}{3!} (2) + 0$$

$$= n + \frac{3n(n-1)}{2} + \frac{n(n-1)(n-2)}{3}$$

$$= \frac{1}{6} (6n + 9n(n-1) + 2n(n-1)(n-2))$$

$$= \frac{1}{6}n(6+9n-9+2n^2-6n+4)$$
$$= \frac{1}{6}n(2n^2+3n+1) = \frac{1}{6}n(n+1)(2n+1)$$

Example 21 Prove that $u_0 + u_1 x + u_2 x^2 + \dots = \frac{u_0}{1-x} + \frac{x \Delta u_0}{(1-x)^2} + \frac{x^2 \Delta_{u_0}^2}{(1-x)^3} + \dots$ and hence evaluate $1.2 + 2.3x + 3.4x^2 + 4.5x^3 + \dots$

Solution: $u_0 + u_1 x + u_2 x^2 + \dots = u_0 + xEu_0 + x^2 E^2 u_0 + \dots$ $= (1 + xE + x^2 E^2 + \dots) u_0$ $= \frac{1}{1 - xE} u_0 \qquad \because S_\infty = \frac{a}{1 - r}$ $= \frac{1}{1 - x(1 + \Delta)} u_0 = \frac{1}{(1 - x) - x\Delta} u_0$ $= \frac{1}{1 - x} \frac{1}{1 - \frac{x\Delta}{1 - x}} u_0$ $= \frac{1}{1 - x} \left(1 - \frac{x\Delta}{1 - x}\right)^{-1} u_0$ $= \frac{1}{1 - x} \left(1 + \frac{x\Delta}{1 - x} + \frac{x^2 \Delta^2}{(1 - x)^2} + \dots\right) u_0$ $= \frac{u_0}{1 - x} + \frac{x\Delta u_0}{(1 - x)^2} + \frac{x^2 \Delta^2 u_0}{(1 - x)^3} + \dots = \text{R.H.S.}$

Now to evaluate the series $1.2 + 2.3x + 3.4x^2 + 4.5x^3 + \cdots$ Let $u_0 = 1.2 = 2$, $u_1 = 2.3 = 6$, $u_2 = 3.4 = 12$, $u_3 = 4.5 = 20$, ... Forming forward difference table to calculate the differences

u	Δ	Δ^2	Δ^3	Δ^4	
$u_0 = 1.2 = 2$	••••••	•••			
	4	*******	•••.		
$u_1 = 2.3 = 6$		2			
	6		0	······	
$u_2 = 3.4 = 12$		2		0	
	8		0		
$u_3 = 4.5 = 20$		2			
	10				
$u_4 = 5.6 = 30$					
$\therefore 1.2 + 2.3x + 3.4$	$4x^2 + \frac{1}{2}$	$4.5x^3 +$	$\cdots = \frac{u}{1-u}$	$\frac{x_0}{-x} + \frac{x\Delta u_0}{(1-x)}$	$\frac{1}{2} + \frac{x^2 \Delta_{u_0}^2}{(1-x)^3} + \cdots$
			$=\frac{2}{1-2}$	$\frac{4x}{x^2} + \frac{4x}{(1-x)^2}$	$\frac{1}{2} + \frac{2x^2}{(1-x)^3} + 0$
			$=\frac{1}{(1-1)}$	4	

Exercise 6A

- 1. Express y_4 in terms of successive forward differences.
- 2. Prove that $\Delta^n e^{3x+5} = (e^3 1)^n e^{3x+5}$
- 3. Evaluate $\Delta^2 \left(\frac{5x+12}{x^2+5x+6} \right)$

_

4. If
$$u_0 = 3$$
, $u_1 = 12$, $u_2 = 81$, $u_3 = 2000$, $u_4 = 100$, calculate $\Delta^4 u_0$.

5. Prove that
$$\mu = \frac{2+\Delta}{2\sqrt{1+\Delta}} = \sqrt{1 + \frac{1}{4}\delta^2}$$

6. Find the missing value in the following table

x	0	5	10	15	20	25
y	6	10	-	17	-	31

7. Sum the series 1^3 , 2^3 , 3^3 ,..., n^3 using finite differences.

Answers

1.
$$y_4 = y_0 + 4\Delta y_0 + 6\Delta^2 y_0 + 4\Delta^3 y_0 + \Delta^4 y_0$$

3. $\frac{-3(x^2 + 9x + 15)}{x(x+1)(x+4)(x+5)(x+8)(x+9)}$
4. -7459

6. 13.25, 22.5