CHAPTER 12

BESSEL’S AND LEGENDRE’S EQUATIONS

12.1 Introduction

Many linear differential equations having variable coefficients cannot be solved by usual
methods and we need to employ series solution method to find their solutions in terms of infinite
convergent series.

12.2 Bessel’s Equation

a?y
dx?

The differential equation x?—= + xj—i + (x*=n%)y =0...... @

IS known as Bessel’s equation of order n and it’s particular solutions are called Bessel’s
functions. Series solution of O in terms of Bessel’s functions J,(x) and J_, (x) is given by

y =AJ,(x) + BJ_,(x)

where J,(x) = Z?‘LO(—l)r;(f)””T

r!'T'(n+r+1) \2

]—n(X) = Z;f’:o(_l)r I (f)—n+2r

r!'T'(—n+r+1) \2
Proposition If n is any integer then J_,,(x) = (—1)"/,,(x)

Proof: Case I: n is a positive integer

]—n(X) = Zf_ozo(_l)r I (f)—n+2r

r!'T'(—n+r+1) \2

If n is a positive integer, values of r from 0 to (n — 1) will give gamma function of -ve
integers in the denominator, which being infinite all such terms will vanish.

"']—n (X) — Z?ozn(_l)r ;(E)—THZr

r!T(—n+r+1) \2

Puttingr = n + k , we get

Jon () = Xp o (— 1)k 1 ({)"*’2"

(n+k)! T(k+1) \2

= (D" S D e ()

n+k+1
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= (=" ()

Casell:n=0

J-o(x) = (=1)° Jo(x)
or Jo(x) = Jo(x), which is true
Case Ill: n is a negative integer
Let = —p , where p is a positive integer
Fromcase | J,(x) = (—1)7PJ_,(x)

= ] () = (=1)"/ ()
12.2.1 Expansions of Jo(x) , J1(x) ,]%(x) and ]_%(x)

We have J,(x) = X2 ,(=1)" (g)n+2r .

r!'T'(n+r+1)

1 Jo) = S0 (2)

r 4
T'F(r+1) - Zr 0( 1)r( ) (rH2

~ ['(r+1 = r! when r is a positive integer

=)o@ = 1= (3) + (@) + (@) +

2. 10 =31 () e = 320 () i

v~ T'(r+2 = (r+ 1)! when r is a positive integer
_x 1 X 2 1 X 4 1 X 6
= () 5[ ~170) *356) +3:6) +]

3. J1(3) = ZZo(— 1" O €3
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\I'rtx 2! 4! 6! \}Ttx

12.2.2 Recurrence Relations of Bessel’s Function

(D) Y] =2 (®) o 2, (Ddx = X, (%)

1
r!T(n+r+1)

Proof: /() = Sezo(-1)" (3)

x2n+2r 1

= x"[n(x) = XZo(—=1)"

20420 I T(n+r+1)

4y Cxee gy 2(np)x2neRrel 1
= o [x .]Tl(x)] _27":0( 1) 2n+2r r! (n+r)f(n+r)

“Tn+r+1)=m+)f(n+r)
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(n-1)+2r 1
) rir((n-1)+r+1)

= 2" N (-1 (2
= X"y (%)

@) L u@)] = X @) O X1 (0 dx = =[x, ()]

1
r!T'(n+r+1)

Proof: J,(x) = Xoro(—1)" (g)nm

1
r!'T(n+r+1)

2r
= X (0) = TR (-1 S

1
(r—1)! rT(n+r+1)

d _ o 2 2r—1
= X ®] = I (1) T

n+2r-1 1
) (r-1)! T'(n+r+1)

=x 3z, (-0

(Tl+1)+2k 1
) k! T((n+1)+k+1)

= —x B (—1D* (2
Putting r =k + 1
= X4 (%)
B)  Ju'(®) =Ju1(®) = ZJu(x)
Proof: From recurrence relation (1)
=[x ()] = X" (%)
= X" (%) + nx" T, () = X" (%)
Dividing by x™, we get
Jal) 21000 = Juea ()
= o' (0) = Jna (0) = ~Jn (%)
@ T = T () + T (%)
Proof: From recurrence relation (2)
= (0] = =X 0 (2)

= x7, () —nx T (0 = —x T (%)

Page | 4



Dividing by x™™, we get
Ja(0) = ~Jnea (1) +ZJn (x)
6)  Ju@ =3 Unc1() — Jus1 ()]
Proof: Adding recurrence relations (3) and (4), we get
) = 2 Unea (0 = Jnaa (0]
©6)  2nJ,(x) = x[Jn-1(x) + Jp41 (X)]

Proof: Subtracting recurrence relations (3) from (4), we get
2 g]n(x) = ]n—l(x) +]n+1(x)

= Zn]n(x) = x[]n—l(x) +]n+1(x)]
Example 1 Evaluate J3(x),J 3(x),/Js(x) and J s(x)

Solution: From recurrence relation (6)
2 g Ja OO =L 10 4 Ja1 () e )
Putting n = % in O
=1 120 =200 +2)

= J2() = 11100 —J2(0

2 (sinx 2 . 2
= [E(—cosx) h = [Zsinx,ja00 = [Zcosx

Putting n = —% in @

= =1 ]2 =200 + 1100
= J2(0 = = /=20 — 1)

2 (cosx . 2 . 5
= — E( . +51nx) .]%(x)— fasmx,]_?l(x)_ /ﬂxcosx

Putting n = g in @
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= )20 =100 +J5()

= J:(0 =7 J3() = 1)

3 2 (sinx 2 .
= - ’—( —COSJC)— /—smx
X \ TTx X X

2 [3—x2 . 3
= |=|——Ssinx —-cosx
X X X

Putting n = —z in ©
-2 J=2 () = =500 + 2060

=>]—75(x) = —z ]—73(96) —]—71(96)

3 2 (cosx . 2
= = |= +sinx)— [—cosx
X X X X
_ |2 [3-x? 3 .
= |[—=|——cosx +=sinx
X X X

Example 2 Show that:
ONEACEEINC)
(i) JnezC) +Jnes () ==+ D) Jpia(®)
(i) 0 = Un-2(0) = 20 () + Ja ()]
V) (L) r @] = (D™ e ()
V) =[x JnC) Jaea (] = x [ () = Jaa* ()]
(Vi) T30 +3J600) + 45" () = 0

Solution: (i) < [x 7, ()] = —x "y (1)
=z ;_x[]f’(x)] = —J;(x) ,Puttingn =0

or Jo(x) = —J1(x)

(i) From recurrence relation (6)

2nJ,(x) = x[J,—1 () + Js1 CGO] oot D
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Replacing n by (n + 4) in @

2+ 8)]n(x) = xUn43(0) + Jnas ()]

= Jnrs () + Jnes (1) = 2 (0 +4) Jpa(x)

(iii) ~ From recurrence relation (5)

5 =2 Une1 () = Jasa ] e @
= I3 G0 == [noa @) = Jraa (O] o @
Replacing (n — 1) in place of n in @
= J51 (0 = 2 Uy (0 = ()] .....®
Replacing (n + 1) in place of n in @
> Jr1 (0 = 5 () =z (0] oo @
Using @ and @ in @

I @) = 2| S Un2(0) = Jn (O] = 2 Un (@) = Jse (0]

= = [z () = 2/ (6) + Jaa ()]
(iv)  From recurrence relation (2)
=[x (0] = =% pea (X)

Multiplying both sides byi

= @] = ~ o T () o

xdx

Multiplying both sides of (D by G:—x)

(315 ddx) ™ n (0] = (315 ddx) [x"+1 ]n+1(x)]
= (—1)2 xn%],ﬁz (x) using D......... @)
Again multiplying both sides of @ by G dd—x)
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(v)

(vi)

(11)3 (0] = (12 (35 | o e )]

x dx x dx

= (-1)? x_1+3]”+3(x) again using @

n

Continuing in this manner m times, we get

L) 0] = D™ S hrem ()
= [ Jn GO Je1 (O] = J G Jaa () + 5 1" GO Ja () + 2 Jn () Jpa (). D
From recurrence relation (4)
Jn() = 1 GO+ () @)
Also from recurrence relation (3)
Ja() = Jaa () = < Jn(x)
> S () = Jn () ="l () ®
Using @ and @ in @O we get

L2 a0 Jas1 GO = () S OO + % [T () + 21,0 Jaa () +

% @) [a@) =22 () |
= Jn () Jne1 () = XJngr () + 1 ()] 41 () +
XJn? () = (n + 1)) () g1 (%)
=x [Jn2 () = Jpsa 2 (0]
Jo(x) = —J1(x)  from (i)
= J5 00 =~ J;(0)
==l = ;)] Using J5(0) = > [Jn-1(0) = Jnss ()]
Differentiating again we get
J§' ) = =S 1500 = (0]
= =3 [50 =5 (160 = J5@)] Using Ji@) = 3 Un-1 () = Jss ()]
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= 2[00 + 2150 + 1500 Using -1, () = J5@)
= —=[3/5(0) + J5(x)]

= J3(x) + 3Jo(x) +4J5"(x) =0

Example 3 Show that:

i) [xJo*)dx = Zx?[Jo* () + ;7 (x)]
(i) JEvE a@ode =1

(i) S0 dx = =2J,(0) = J,(x)

V) Jx ) dx = =2 J5(0) = 5100

W) I dx = 1,00 = 2J300 = 2/, ()

Solution: (i) [ x/s2(0) dx = Jo>(0). % — [ 2/ ()5 (). 5 dx
= [0 2+ [ o) i )dx  Jax) = — ()
= 12002+ [ x )1 (x) o) dx
= [0 ()2 + [ x /() 2 [ ]y (0))dx
v xfo(x) = dix [x J; (x)] from recurrence relation (1) by puttingn = 1
o J 1o () dix = Jo? (). 2 4 SBEOE

= ~x2[Jo* () + 1,2 ()]

.. z NI .
(i) f2Vmx ]%(Zx)dx = ﬁfo Vvt ]%(t)dt Putting 2x =t

- % ” (\/?\/% sin t) dt ACE \/%sin t
= [Isintdt =1
(i) [ J2(x) dx = [ x?x72]5(x)dx
= — [ Sy @)dx o [ (0] = =2 (2)
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= —x2[x7%],(x)] + [ 2x[x~?J,(x)]dx Integrating by parts
= ~J,(0) +2 [[x ()] dx
= L) =2 [ L@ dx S @] =~ (1)
= —J,(0) =2/,
(i) [x7Yal) dx = [ x?(x 73, (0) dx
=[S @[ dx T (0] = —x s ()
= —[x%x73J5(x) — 2 [ x x73 J3(x)dx] Integrating by parts

—J3(0) +2 [ x7?J3(x)dx

= —2J300 = 2 [ = (x7? [ (0)dx
= —~J5(0) — = J,()
V) s dx = [x*x7*s(x)dx

= — [ S @)dx Y (0] =~ ()

—x*[x™*, ()] + [ 4x3[x~*J,(x)]dx Integrating by parts

—Ja(x) + 4 [[x2x 73], (x)] dx

—Ja(0) = 4 [ % =[x 35 (0)ldx [T (0] = =X (3)

= —J,(x) — 4x?x73J3(x) + 8 [ x2J3(x)dx Integrating by parts
= 1,00 = 21300 = 8 [ X2 (0ldx [Ty ()] = =Xy (%)
= —Ja(0) =2 ]300 = 2 /2(0)

Example 4 Express J<(x) in terms of J,(x) and J; (x)

Solution: From recurrence relation (6)
20 (1) = X1 () + 1 O] 2 Jgr () =22 [, (0) = ey () .. D

Putting n =4in O, weget J:(x) = g Jo.(x) —Js(x) ... @
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Putting n = 3in @, we get  J, () =2 J;(0) = () ... ®
Putting n = 21in @, we get  J5(x) == J,(0) =/ (x) ....... @
Putting n = 1in @, weget  J,(x) = % J100) = Jo(x) ... ®
Using © in @, we get J; () =~ |2 /60 = Jo@)| /@)
= 00 =(5-1) 1) =)o) .....®
« J3(e) in terms of Jo(x) and /1 () = (5= 1) 160 = 2Jo(®)
Using ®and ® in @ , we get
L0 =2 [(5-1) L@ - 20@)]| = [2 100 = Jo )]
= |G-3-2)n@]+[(-5+ 15w
= (2-9 @0+ (1-3) 6@ ... @
 J4(Ge) interms of Jo(0) and /; (00 = (5 -2) i) + (1= 5) o)
Using @ and ® in @, we get
500 =2 { (B-5) L@ +(1-5) 1@} - {(Z - 1) 1) =21 (@)}
- (-2 ¢ (24w
= (B-Z+1) 10+ (Z2-2)0®

+Js(x) interms of Jo(x) and J; () = (5 =2+ 1) 1,00 + (Z = F) o)
12.2.3 Orthogonality of Bessel’s Function

If « and B be roots of the equation J,,(x) = 0, then

1 0 iff#a
fO x]n(a’X)]n(ﬂx)dx = { §]£+1(a) lfﬁ —

Proof:  Given that a and S be roots of the equation J,,(x) = 0
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s @=7,8)=0 ... )

Consider the Bessel’s equations:

x2u"+ xu' + (a?x* —n*Hu =0....0

x2v"+ xv'+ (p?x2 —n?)v =0..... O

Solutions of 2 and @are respectively u = J,,(ax) and v = J,,(Bx)
Multiplying @ by 5 and @by% and subtracting

xWwv—ur)+ @v—uv)+ (a? - fHuvx =0

%[x(u'v —uv) + (a? — fHuvx = 0] ....D

Integrating @ with respect to x from 0 to 1

[x(uv —uv)]} + (a? — B?) foluvx dx =0

= (a? — B?) fol uvx dx = [uv' — u'v],—,

= (a% = B2) [ 1Jn(@x)]n(BX) dx = [B](ax)]5 (Bx) = Sy (@) ] (BX)]x=r
cu=Jo(ax) v =J,(B%)  w' = afpax) , v’ = Bln(BX)
= (% = B2) [ 1/ (@0)]n(B2) dx = B, ()]0 (B) — afy (@] (B) ....H
o f % (@) J,(Bx)dx = 0 if if B #
“Jn(@) =Jn(B) =0 From @

Agaln |f ﬂ —a, f01]TZl+1(a) dx — ajn(@)Jn(a)—ajy(a)n(a) Wthh |S % fOI’m

a2_ 052
To overcome this difficulty, let a be root of the equation J,,(x) = 0,
sothat/,(a) =0,alsoletf =a+h
Substituting J,,(a) = 0, 8 = a + h and taking limit h - 0 in ®

—ajp(@Jnla+h) .. ap(@)jn(a+h)

.1 e
}ll_r)rcl) fo x),(ax)],(a + h )x dx = lim,,_, el L\ e

Itis still % form, so applying L Hopital’s rule on R.H.S.
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| _ 5 Jn(@) Jn(a+h)+]n(@)Jn(a+h )
lim Jo ¥In(ax)],(@+h )x dx = ll}lir_l)oa[ ey

=~ Ji2(@) =5 )2 (@)

12.3 Legendre’s Equation

Another important differential equation used in problems showing spherical symmetry is
Legendre’s equation given by (1 — x ) Zx ~t nn+1)y =0...... @

Here n is a real number, though in most practical applications only non-negative integral values
are required.

Series solution of Min terms of Legendre’s function P,(x) and Q,,(x) is given by

y = Apn(x) + BQn(x)i

where P,(x) = %[ n_ nm=1) 5  n@-Dn-2)(n-3) ,_4 ]

2(2n-1) 2.4.(2n-1)(2n-3)

P,(x) is a terminating series containing positive powers of x.

n! —n—-1 (n+1)(n+2) _,_3 n+1)(n+2)(n+3)(n+4) _p_c ]
Qn (x )_135 .(2n+1) [x + 2(2n+3) x + 2.4(2n+3)(2n+5) X

Q,,(x) is a non-terminating (infinite) series containing negative powers of x.

12.3.1 Generating function for P, (x)

The function (1 — 2xz + ZZ)_% is called the generating function of Legendre’s polynomials
as (1—2xz+ 22)—% =Yoo B (x)z™

Proof: (1 — 2xz +22)72 = [1 — (2xz — 7%)] 2

=1+4+:Q2xz—20) +=2Qxz — 202 + 4= 2 K2 Qxz — 22k + -
2 2 4 2 4 2

w 13 2k-1
:1+Zk=ozz ..Z—(ZXZ—ZZ)k ...... @

Again (2xz — z2)* = zF[2x — z]*

k(k 1)

= 7" [(@20F - k@0 1z + 22 2x)F 222 — ot (-DK2H] L @

1
Using @ in D, weget (1 —2xz+2z%)7z =
Page | 13



2k-1 k(k 1)

1+ZI?=O% [(2 )k k—k(ZX)k 1 k+1+ (2 )k -2 k+2

3
PR

Coefficient of z™ in expression (@ is given by

-+ (_1)kzzk]

12 (B g 13 () (0 pyppner g 12 (B 000D o

2n-2 2n—4
_ 13.5..(2n-1) X" — n(n-1) x"-2 nn-)(n-2)(n-3) p_4 ]
B n! 2(2n-1) 2.4.(2n-1)(2n-3)
= B,(x)

. (1—2xz 42272 = Y2, P,(x)2"
Corollary (i) P,(1) =1 (i) P,(—1) = (D"
Proof: (1 —2xz+ 22)—% =Y B,z ... @

Putting x = 1 on both sides of

(1= 22 +2%)77 = ¥, P, (1)z"

= (1-2)"t =Yy, P,(1)z"

514z +2%24+ . +z2"+- =30 P (Dz"

502" = N0y Py(1)2"
Comparing the coefficients of z™ on both sides, we get B,(1) =1
Putting x = —1 on both sides of O

(1+ 22+ 22)72 = ¥y P,(1) 2"

= (1+2) =Y P, (1)z"

>1—-z+z2— .+ (D"z2"+ - =¥2 ,P,(1)z"

Ln=o(—1)"z" = X B (Dz"
Comparing the coefficients of z™ on both sides, we get B,(—1) = (—1)"
Example 5 Prove that P, (—x) = (—1)"B,(x)

Solution: Generating function of B, (x) is given by

(1-2xz+ 22)—§ =y P,(x)z"....D

Replacing x by - x on both sides of O

Page | 14



(1+ 2xz + 22)—§ =¥ P, (—x)z" ... @)
Again replacing z by - z on both sides of O
(1+ 20z + 272 = 5o B (-2)" = Tio(-D"B@7" -+ @
Comparing @and @
=0 Pa(—=x)z" = X3 o(—1)" P, (x) 2"
= B(=x) = (=1)"P,(x)
12.3.2 Recurrence Relations of Legendre’s Function P,,(x)
(1) m+1)P, 1 (x) = 2n+ Dx P,(x) —nP,_,(x)
Proof: From generating function (1 — 2xz + zz)"% =32 0 Z2"P(x)...... Q)
Differentiating both sides of (D partially with respect to z, we get
~1 (1~ 2xz + 2972 (~2x + 22) = Sy nz" Ry (x)
= (x—2)(1-2xz+ 22)—§—1 =y onz" 1P, (x)
= (x—2z)(1-2xz+ 22)—§ =1 -2xz+2z*) Yy onz" 1P, (x)
> (x—2) X0 z"P(x) = (1 — 2xz + z2) Y5 ynz" 1P, (x) using D
Equating coefficient of z" on both sides
xP,(x) —P,_i(x) =(n+1)P, 1 (x) — 2xnP,(x) + (n — 1)P,,_,(x)
= (n+ P, (x) = 2n+ 1)x P,(x) —nP,_,(x)
(2 P,(x) =P, 1(x) —2xP,(x) +P,_4(x)
Differentiating both sides of (O partially with respect to x, we get
—% (1-2xz+ zz)_l_%(—Zz) =y z"Pr(x)
= z(1—-2xz + zz)_% =1 —-2xz+2z%) Y2 ,z"Pl(x)
=zy0 z"P,(x) = (1 —2xz + z%) ¥, z" P, (x) using @
Equating coefficient of z"** on both sides
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Py (x) = Py (x) — 2 Py(x) + Py (x)
3) nP,(x)=xP,(x)—P,_{(x)
Differentiating recurrence relation (1) partially with respect to x, we get
(m+ 1P, (x) = 2n+ 1) xP,(x) + 2n+ 1)P,(x) —nP,_,(x)....@
Also from recurrence relation (2)
P i(x) =B, (x) + 2x Py(x) — P, (x) ...... ®)
Using @ in @), we get
(n+ D[B,(x) + 2x Py(x) = P_1 ()] = 2n+ 1) x P,(x) + 2n + 1)P,(x) — nP,_,(x)
= 1B, (x) = xP; (x) — Py (x)
4 (m+1)P,(x) =P, ,(x)—xP,(x)
Adding recurrence relations (2) and (3), we get
(n+ DB (x) = Ppyy (0) — xP (%)
(6) (@n+ 1)P,(x) =Pp () — P4 (%)
Adding recurrence relations (3) and (4), we get
(2n+ 1)P,(x) = Ppyy (x) — Py (%)
6) (A-x*)P,(x) =n[P,_1(x) —xP,(x)]
Replacing n by (n — 1) in recurrence relation (4)
nP,_,(x) =P/(x) —xP,_;(x) ...... @
Also multiplying recurrence relation (3) by x
nxP,(x) = x?Py(x) —xP_;(x) ....... ®
Subtracting ® from @
(1—x?) Py(x) =n [Py, (x) — xP,(x)]
(M) A=x)Py(x) = (m+1) [xPy(x) — Ppys (1]
Replacing n by (n + 1) in recurrence relation (3)

= Mn+ 1P, (x) =xPl.,(x) =Pl (%) ...... ®
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Also multiplying recurrence relation (4) by x
(n+ DxP,(x) = xP. ., (x) = x?Pi(x) ........ @
Subtracting ©® from (@), we get

(1—-x*)Py(x) = (n+ 1) [xP,(x) — Ppyq ()]

Ppy1(0)—Pp_1(x)
2n+1

Example 6 Prove that [ P,(x)dx + C =
Solution: From recurrence relation (5)

2n+ 1B, (x) =Py (x) —Py_;(x)

Pr ()= Pp_ ()
= P,(x) = “&mlx

Integrating both sides, we get

—_ Ppy1(x)—Pp_1(x)
[P, (x)dx +C = —

Example 7 ShowthatP,,; + P,_; = Py + 3P, + -+ (2n + 1)P,
Solution: From recurrence relation (5)
2n+ 1B, =P — Py

Puttingn = 1,2,3 ....n, we get

3P, = P; — P}
5P, =P —P;
7P, =P, — P}

@n-1P, =P, — P,

@Cn+ P, =P — Py

Adding all these relations, we get

3P, + 5P, + 7P; + -+ (2n+1)P, = =Py —P{ + P, + P, 4
=0—P, +P. +P,

“Py=0,P{ =1=P,
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> P +P1=P+3P+ 4+ 2n+1)P,
12.3.3 Rodrigue’s Formula

Rodrigue’s formula is helpful in producing Legendre’s polynomials of various orders and is
givenby P,(x) = — —(x -

2nn! dxn

Proof: Lety = (x%2 — 1)®

LAy n-1 (x2-1)"
= n(x? — )" 12x = 2nx—— R
dy
2y, =1 —-2nxy=0, y; =— ... @

Differentiating @ (n + 1) times using Leibnitz’s theorem:

(n+1) n

= Yni2(X2 =D+ (n+ Dyp 2x) + Yn(2) = 2n[ype1(x) + (n+ Dy, (1] =0

= yn+2(x2 - 1) + nyn+1 - (nz + n)yn =0
= (1= x)Yps2 — 2XYps +n(n+ 1Dy, =0......... ®)

Putting y,, =V ,sothat y,,,, = Z—Z and y,,, = —

®= (1 —xz)—— 2x—+n(n+ DV =0
which is Legendre’s equation with the solution V = AP,(x) + BQ,,(x)

But since V =y, = i{—:(xz — 1)™ contains only positive powers of x, solution can only be a
constant multiple of P, (x).

=~ P,(x) =CV =Cy,
=C @ - @
= o [(x - DM+ D" o= pn
=CD™[(x — D)™(x + D]
=C[D™(x — D"(x + 1)" + nc, D" 1(x — D)™n(x + D" 1+ -+ (x — D™D (x + 1)"]
=Cln!(x+ D" +n.nn—-1)..3.2.(x — Dnlx+ 1" + -+ (x — 1)"n!]
Taking x = 1 on both sides
>1=Cnl2"+0 ~P,(1)=1
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Using ® in @ , we get
dn
P(x0) = o= —— (22 = )"

Puttingn =0, Py(x) =1

Puttingn =1, P;(x) =

N |-

d 2 _ 4yt 1o _
dx(x 1) —22x—x
1

d_2 2_12_1(3 2_1)
2221 dx? (x ) =X

Puttingn = 2, P,(x) =
Putting n = 3, P;(x) = %(Sx3 — 3x)
Putting n = 4, P,(x) = é(35x4 — 30x2% + 3)
Puttingn =5, Ps(x) = §(63x5 — 70x3 + 15x) etc...
Example 8 Expand the following functions in series of Legendre’s polynomials.
(i) (1 +2x —x?)
(i) (x® —=5x2+x+ 1)
Solution: 1 =Py(x), x = P;(x),
Py(x) = 2(3x2 = 1) = x2 = Z(2P,(x) + 1) == (2P,(x) + Py ()

Py(x) = %(Sx3 —3x) @ x3 = %(2P3(x) + 3x) = é(2P3(x) + 3P1(x))
(i) LetE =(1+2x—x?)

Substituting values of 1, x and x? in terms of Legendre’s polynomials, we get

E = (P + 25, () — (2B, + Py ()

= %(3P0(x) + 6Py (x) — 2P, (x) — Py (x))

_ 2

=~ (Po(®) + 3P (x) = P,(1))
(ii) Let F = (x3 —5x2+x+ 1)
Substituting values of 1, x, x? and x3in terms of Legendre’s polynomials, we get

F = [2(2P;(x) + 3P, () — 2 (2P, (x) + Py(x)) + Py (x) + Py(x)]

= %Pg(x) — ?Pz(x) + §P1(x) - §P0(x)
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0 n+0

Example 9 Prove that (i) f_ll P,(x)dx = {2 n=0

(i) f_ll x™P,(x)dx = 0, if m < n where m and n are positive integers
Solution: (i) 7, P,(x) = o= [7, D"(x? — 1)"dx

= —[Dn 2 =1L

2Mn!

= ——[D" M (x - D (x + 1)”]]

2Mn!

Expanding using Leibnitz’s theorem

e —_[p"™- Mx—D"x+ D"+ -+ (x —D)"D" 1(x + D)L,

=—[n(n—-1). B2 D+ D"+ -+ (x—D"n.(n—1) ..3.2(x + 1],

2nn!
=0 onputtingx=1o0r —1
Now whenn =0, Py(x) =1
f_ll Py(x)dx = f_ll ldx = 2

(Il)f x™P, (x)dx = f x™mD™(x? — 1)"dx

_ 1

Z"n'

{[me" a2 -1, - f_ll mx™ 1D (x2 — 1)”dx}
= {0 f mx™ 1D (x% — 1)"dx} By part (i)
— {f xM=1pn=1(x2 1)”dx}

Continuing the process (m — 1) times, we get

f_llmen(x)dx— {f xOD™ M (x? — 1)ndx}

2nn!

- —-1m [Dm n— 1(x _1)n]1

2Mn!

=0ifn=>m+1lien>m
12.3.4 Orthogonality of Legendre’s polynomial
Orthogonality property of Legendre’s polynomials is given by the relations

f_ll P,(x)B,(x)dx = 0, whenm # n

and f_ll P2 (x)dx = Zn% ,whenm =n
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where m and n are positive integers

Proof: By Rodrigue’s formula
— m —_ d_n 2 _ n
B,(x) = pereriiye (x 1™ and P,(x) = reiererd Calbal Y
1 1 1
1= PP, (x)dx = prp—— Jo, DM(x* = )"D™(x* — 1)™dx

Integrating by parts

1

:m {[Dn(xZ — 1)an—1(x2 — 1)m]£1 _ f_ll Dn+1(x2 _ 1)an_1(x2

1

1 —_—
=g 10— [, D — 1D (e — 1) d
_m {f D™ (x? = 1)"D™ T (x? - 1)mdx}
Continuing the process (n — 1) times
__ =" 1 _
e ([, D2 — 1) D™ (a2 — 1)™dx]

o (1 _
=—Cu° { [, D (x? — 1)nDm(x2 — 1)mdx}

_ (1" 2n! 1 _
T 2minmin {f_le (x® - 1)mdx} ------ @
+ D?™(x? — 1)™ = 2n! using Leibnitz’s theorem
—_(_1)n 2n! m-n—-1/..2 _ 1\m]l —
_2m+nm! n! [D (x 1) ]_1 — 0

1= f_ll Bn(x)P,(x)dx = 0,whenm #n

Again puttingm = n in @

= f P2 (x)dx = C1)” 2n {f_ll(xz — 1)”dx}

22n ( |)2

= 22n (n')z {f (1- xz)”dx}

Put x = sin@ - dx = cos@ db

— 2n+1
= 22n (nl)z {f ' cos2tl g dQ}
— 2n 2n+1
= o (nu)z {f cos Gdﬁ}
2! [@ E _ 2n! [(n+1)E 2n! n! E
221 (n1)2 2[(2n+1+2) T o2n (n))2 [(2n+3) T o2n (nhH2 (2n+1) (2n-1)(2n-— 3) 31 [1
2 2 2 2 2 2202

— 1" dx]
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_ 2n! 2ntt _ 2(2n)@2n-1)(2n-2)..3.2.1
~ p2np) (2n+1)(2n-1)(2n-3)...3.1 T 2np (2n+1)(2n-1)(2n-3)..3.1

_2[(2n)(2n-2)...2] [(2n-1)(2n-3)..3.1] _ 2.2™n!
T 2'ni(2n+1)(2n-1)(2n-3)..31 2" n!(2n+1)
2

(2n+1)

Example 10 Prove that
(i) Pp(1) ="

(i) P, (—1) = (_1)(n+1) n(nz+1)

Solution: B, (x) is the solution of Legendre’s equation given by:

(1—x)012 2x—+n(n+1)y—0 ....... @

=y = P,(x) will satisfy equation D

= (1—x3P/(x) = 2x P, (x) + n(n+ 1P,(x) =0.......

Putting x = 1 in @ we get
—2P/(1) + n(n + 1)P,(1) =0

n(n+1)

= P/(1) = P(1) =1

Putting x = —1 in @ we get
2Pi(—=1) + n(n + 1)P,(-1) =0

n(n+1)

= P(—1) = —

Pn(_l)
= (- 1)(n+1) n(n+1) S P(=1) = (=)™
Exercise 12 A

Q1. Prove the following relations for Bessel’s Function [, (x)

i J§ 207 +)3+3+) =1

ii. %x]n =+ D)0 —n+3)] i3+ M +5) 45 —
i, J,—J, = 2JY

v. o =16 -6

V. fooo x"L () dx = x™ L (x) ,n>—1
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Q2. Prove the following relations for Legendre’s Function B, (x)

n (n+1)

(- xZ)Pri(x) = ont1 [Pn—l(x) - Pn+1(x)]
. Py(x) — Pﬁ—z(x) =(2n—-1)P,_1(x)
iii. [} () dx = —P,;(0)

iv. f_11(1 — x2)P,,P; dx = 0, where m and n are distinct integers

Q3. Express the following into Legendre’s polynomial:

i 3x®-2x*+1 Ans.(§P3+§P2+§P1+§p0)
i, S5x3+x%-2x+1 Ans.(2P3+§P2+P1+§PO)

12.4 Previous Years Solved Questions

QL Prove that = [x",, ()] = X"y (%)

(Q1(9),GGSIPU, December 2013)

Solution: J,(x) = Z;’_o=0(_1)r;(£)n+2r

r!I'(n+r+1) \2

1 x2n+2r

rIT(n+r+1) 2n+2r

= X" (x) = XZo(—=1)"

i n _ - _ . 1 2(n+r)x2n+2r—1
= dx [x ]Tl (x)] - Z'I":O( 1) rl (n+r)r(n+r) 2n+2r

“Tn+r+1)=m+)f(n+r)

- 1 (n-1)+2r
= 1" Tio(—1) e (5)

rIr((n—-1)+r+1) \2
= X"Jn-1(x)
Q2. Express the following into Legendre’s polynomial:
(x3 +2x%2 —x —3) (Q1(h), GGSIPU,December 2013)
Solution: 1 = Py(x), x = P,;(x),

Py(x) = 2(3x2 = 1) = x2 = Z(2P,(x) + 1) == (2P, (x) + Py ()
P;3(x) = 2(5x° — 3x) = x> = Z(2P;(x) + 3%) == (2P;(x) + 3P, (x))

LetE = (x3 +2x%2 —x—3)
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Substituting values of 1, x, x% and x3 in terms of Legendre’s polynomials, we get
E = [2(2P;(x) + 3P, () + 2 (2P, (x) + Po(x)) — P, (x) — 3P ()]
=2p,) +2P,00 + (3 1) P + (3= 3) R
= 2P () + 2P, (0) =2 Py () — 2Py ()
Q3. Prove that J,(x) = (i—i - g) J1(x) + (1 - i—j) Jo(x)

(Q9(a), GGSIPU, December 2013)

Solution: From recurrence relation (6)
20 () = %1 () + Jnsr CO] 2 Jnga () = 2 [y () = ey () ..
Putting n =3in O, weget J,(x) = S J2(0) = J,(x) ... @
Putting n = 2in @O, we get  J5(x) == J,(x) = 1(x) ....... ®
Putting n=1in O, we get J,(x) = % J10) = Jo () ... @
Using @ in ®), we get /;(x) = 2|2 /() = Jo@)| — 1)
= J,(0) =(x%—1) L) =26 ... ®
“ J3(o) in terms of Jo (o) and /3 () = (5 — 1) 1) — 2o ()
Using ® and @ in @ , we get
L0 =2[(5-1) L@ - 2] - [2 100 - Jo )]
|G- h@+ (5 1)5e0)
= (G- ho+ (136w
Q4. Prove that [, P, (x)P, (x)dx = ﬁ ,m =n where m and n are positive integers

(Q9(b),GGSIPU, December 2013)
Solution: This is orthogonality property of Legendre’s polynomials

By Rodrigue’s formula
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P, (x) _zm o m(x — 1™ and P,(x) ——(ic—r;(xz—l)"
21= [1 Pp(x)Py(x)dx = m 1, D™ (x? — )"D™(x* — 1)™dx

Integrating by parts

1

_zme" {[Dn(x 1)an—1(x2 _ 1)m]£1 _ f_ll Dn+1(x2 _ 1)an_1(x2

1

1 —_—
=g 10— [, D™ — 1) D™ (e — 1) d
-1 1 ~
“am i U—1Dn+1(x2 — "D (x? — 1)mdx}
Continuing the process (n — 1) times

__cor _
= [, D?"(x? - DD (x? — 1)"dx]

_ o (e _
= [}, D?"(x? — DD (x? — 1)™dx]

=L ([ o - mdx] ®
+ D?™(x? — 1)™ = 2n! using Leibnitz’s theorem
_ (1" 2n!

[D™ "= 1(x2 — 1)L, = 0

T amAny

Puttingm =nin ®

[= f P,(x)P,(x)dx = D7 2n! {f_ll(xz - 1)”dx}

22n ( |)2

= 22n (n')z {f (1- xz)”dx}

Put x = sin@ - dx = cos@ db

s
2n! >
= {f_zn cos?"*1 g de}
22n (Tl!)z T
— 2n! 2 g 2n+1 9 d@
T g2n (n!)2 f Cos
_ 2n! [@ % _ 2n! [(n+1)E 2n! n! E
T 521 (n1)2 (2n+1+2) T 52n 2 [(2n+3) T 52n 2 (2n+1) 2n-1)(2n-3) 31
277 (n) 2[ 2 257 () [ 2 257 () 2 2 2 22 [2
_ 2n! 2ntl

2(2n)(2n-1)(2n-2)...3.2.1
22l (2n+1)(2n-1)(2n-3)...3.1 T 2np) (2n+1)(2n-1)(2n-3)...3.1

_ 2[zn)(2n-2)..2] [(2n-1)(2n-3)..3.1] _ 2.2"n!
T 2nal(2n+1)(2n-1)(2n-3)..3.1 T2 nl (2n+1)

— 1" dx]
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2
T (2n+1)

Q4. Show that J3(x) = \/E—x (Si;x — Cos x)

(Q1(j),GGSIPU, December 2014)

Solution: From recurrence relation (6)
2 g Ju OO = L 10 4 Ja1 () e @D
Putting n = % in @
HOEFIOEIAE

= J3(0) = /1) - J2 (@)

2 (sinx 2 . 2
= [ cosx) wp) = [Zsinx Ja@) = [Zeos

Q5 ShOW that %[x]n(x)]rwl(x)] =X []nz(x) _]n+12(x)]

(Q9(a),GGSIPU, December 2014)

SOlUtiOﬂ: % [x]n(x) ]n+1(x)] = ]n(x) ]n+1(x) + x]n,(x) ]n+1(x) + X]n(X) ]n+1,(x)---®

From recurrence relation (4)
@) = ) + () ©

Also from recurrence relation (3)
Ja() = Jaoa (1) = 2 n(x)
= Jnin () = Jn() =" () ®
Using@ and @ in D we get
L2 1) Jars O = Ja00) Jagr (O + % [~Jnss () + 210 (0| T GO +
% Jn () [Jn () =22 () |
= Ja GO Jas1 () = 2/ g1 ” (O + 1), ()41 () +
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x]nz(x) - (TL + 1)]n(x)]n+1(x)
=X []nz(x) _]n+12(x)]

2n(n+1)
(2n—-1) (2n+1) (2n+3)

Q6. Prove that f_ll x2 P, () P (x)dx =
(Q9(b), GGSIPU, December 2014)
Solution: From recurrence relation (1) for Legendre’s polynomials
(n+ DPuy(x) = 2n+ Dx B(x) —nP,_1(x)
= 2n+DxP,(x) =+ 1P, (x) + nP,_;(x)...D
Replacingn by (n + 1) in @®
(2n+3)x Py (x) = (n + 2)Ppip(x) + (n + 1P, (x)
= % Ppy1 (1) = ——[(n + 2)Ppy2(0) + (n + P, ()] @
Replacingn by (n — 1) in @
2n—1x Py_1(x) =nB,(x) + (n — 1)P,_,(x)
= X Ppy(0) = —[nF,(x) + (n — )P, (0)]... @
Multiplying @and (3, we get

X2 P i1 () Ppog () = [n(n + 2) P, (x) Poy2 (%) + n(n + DA (x)

(2n+3)(2n 1)
+(n =1+ 2)P () Pryz(x) + (n — D(n + VP, (x) Py ()]

Integrating both sides w.r.t x within the limits 0 to 1

nn+2)

1
(2n+3)(2n- 1)f Pa(x) Py (%) dx + &f P7(x) dx

(2n+3)(2n-1)

S Paa ()P () dx

S %2 Py () Py () dx =

(n-1)(n+1)

(n—-1)(n+2)
(2n+3)(2n-1)

(2n+3)(2n- 1)f Py 5 () Ppya () dx +

nn+1) 2
(2n+3)(2n-1) (2n+1)

f_11 X% Ppyr(x) Py (X)dx = [O + +0+ 0]

f P,(x)P,(x)dx=0 m=#n

fl nz(x)dx = o1 m=n

*» By orthogonality property

2n(n+1)
(2n-1) (2n+1) (2n+3)

= f_ll xZ P‘rl+1(x) Pn—l(x)dx =
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