Chapter 4

Z-TRANSFORMS

4.1 Introduction

Z - Transform plays an important role in discrete analysis and may be seen as discrete analogue of Laplace transform. Role of Z - Transforms in discrete analysis is the same as that of Laplace and Fourier transforms in continuous systems.
Definition: The Z-Transform of a sequence u_{n} defined for discrete values $n=0,1,2,3, \ldots$ and ($u_{n}=0$ for $n<0$) is defined as $Z\left\{u_{n}\right\}=\sum_{n=0}^{\infty} u_{n} z^{-n}$. Z - Transform of the sequence u_{n} i.e. $Z\left\{u_{n}\right\}$ is a function of z and may be denoted by $U(z)$

Remark:

- Z - Transform exists only when the infinite series $\sum_{n=0}^{\infty} u_{n} Z^{-n}$ is convergent.
- $Z\left\{u_{n}\right\}=\sum_{n=0}^{\infty} u_{n} z^{-n}$ is termed as one sided transform and for two sided Z transform $Z\left\{u_{n}\right\}=\sum_{n=-\infty}^{\infty} u_{n} Z^{-n}$

Results on Z- Transforms of standard sequences

1.

$$
Z\left\{a^{n}\right\}=\frac{\mathbf{z}}{z-a}
$$

$$
\begin{aligned}
& Z\left\{a^{n}\right\}=\sum_{n=0}^{\infty} a^{n} Z^{-n} \\
& \quad=1+\frac{a}{z}+\frac{a^{2}}{z^{2}}+\frac{a^{3}}{z^{3}}+\cdots+\frac{a^{n}}{z^{n}}+\cdots \\
& \quad=\frac{1}{1-\frac{a}{z}}, \quad\left|\frac{a}{z}\right|<1
\end{aligned}
$$

2. $\quad Z\{1\}=\frac{\mathbf{Z}}{\mathbf{Z - 1}}$

$$
Z\{1\}=\frac{z}{z-1} \quad \text { Putting } a=1 \text { in Result } \mathbf{1}
$$

3. $Z\left\{(-1)^{n}\right\}=\frac{Z}{z+1}$

$$
Z\left\{(-1)^{n}\right\}=\frac{z}{z+1} \quad \text { Putting } a=-1 \text { in Result } \mathbf{1}
$$

4.

$$
\begin{aligned}
& \text { 4. } \begin{array}{l}
\boldsymbol{Z}\{\boldsymbol{k}\}=\frac{\boldsymbol{k} \boldsymbol{z}}{\mathbf{z}-\mathbf{1}} \\
\begin{aligned}
& Z\{k\}=\sum_{n=0}^{\infty} k Z^{-n}=k \sum_{n=0}^{\infty} Z^{-n} \\
&=k\left[1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots+\frac{1}{z^{n}}+\cdots\right] \\
& \therefore Z\{k\}=\frac{k z}{z-1}
\end{aligned} \\
\text { 5. Recurrence formula for } \boldsymbol{n}^{p}: \quad \boldsymbol{Z}\left\{\boldsymbol{n}^{p}\right\}=-\mathbf{z} \frac{\boldsymbol{d}}{\boldsymbol{d} \boldsymbol{z}} \boldsymbol{Z}\left\{\boldsymbol{n}^{p-1}\right\}
\end{array}
\end{aligned}
$$

$$
\begin{align*}
& Z\left\{n^{p}\right\}=\sum_{n=0}^{\infty} n^{p} Z^{-n}, p \text { is a positive integer } \tag{1}\\
& Z\left\{n^{p-1}\right\}=\sum_{n=0}^{\infty} n^{p-1} Z^{-n}
\end{align*}
$$

Differentiating (2) w.r.t. z, we get

$$
\begin{aligned}
\frac{d}{d z} Z\left\{n^{p-1}\right\} & =\sum_{n=0}^{\infty} n^{p-1}(-n) z^{-n-1} \\
& =-Z^{-1} \sum_{n=0}^{\infty} n^{p} Z^{-n}
\end{aligned}
$$

$$
\Rightarrow \frac{d}{d z} Z\left\{n^{p-1}\right\}=-z^{-1} Z\left\{n^{p}\right\} \quad \text { using(1) }
$$

$$
\Rightarrow Z\left\{n^{p}\right\}=-z \frac{d}{d z} Z\left\{n^{p-1}\right\}
$$

6. Multiplication by \boldsymbol{n} :

$$
Z\left\{n u_{n}\right\}=-z \frac{d}{d z} Z\left\{u_{n}\right\}
$$

$$
\begin{aligned}
Z\left\{n u_{n}\right\} & =\sum_{n=0}^{\infty} n u_{n} z^{-n} \\
& =-z \sum_{n=0}^{\infty} u_{n}(-n) z^{-n-1} \\
& =-z \sum_{n=0}^{\infty} u_{n} \frac{d}{d z} z^{-n} \\
& =-z \sum_{n=0}^{\infty} \frac{d}{d z}\left(u_{n} z^{-n}\right) \\
& =-z \frac{d}{d z}\left(\sum_{n=0}^{\infty} u_{n} z^{-n}\right) \\
& =-z \frac{d}{d z} Z\left\{u_{n}\right\}
\end{aligned}
$$

7.

$Z\{n\}=\frac{Z}{(z-1)^{2}}$

$$
\begin{aligned}
& Z\{n\}=-z \frac{d}{d z} Z\left\{n^{0}\right\} \\
& \text { using Recurrence Result } 5 \text { or } 6 \\
&=-z \frac{d}{d z} Z\{1\} \\
& \Rightarrow Z\{n\} \\
& \Rightarrow Z \frac{d}{d z} \frac{z}{z-1} \quad \text { using result } 2 \\
&(z-1)^{2}
\end{aligned}
$$

8.

$$
\left.\begin{array}{l}
\boldsymbol{Z}\left\{\boldsymbol{n}^{2}\right\}=\frac{\mathbf{z}^{2}+\mathbf{z}}{(\mathbf{z}-\mathbf{1})^{3}} \\
Z\left\{n^{2}\right\}=-z \frac{d}{d z} Z\{n\} \text { using Recurrence Result } \mathbf{5} \text { or } \mathbf{6} \\
\\
=-z \frac{d}{d z} \frac{\mathbf{z}}{(\mathbf{z}-\mathbf{1})^{2}} \quad \text { using Result } 7
\end{array}\right\} \begin{aligned}
& \Rightarrow Z\left\{n^{2}\right\}=\frac{z^{2}+z}{(z-1)^{3}}
\end{aligned}
$$

9. $Z\left\{u(n)=\left\{\begin{array}{l}0, n<0 \\ 1, n \geq 0\end{array}\right\}=\frac{z}{z-1} u(n)=\left\{\begin{array}{l}0, n<0 \\ 1, n \geq 0\end{array}\right.\right.$ is Unit step sequence

$$
\begin{aligned}
& Z\{u(n)\}=\sum_{n=0}^{\infty} u(n) z^{-n}=\sum_{n=0}^{\infty} 1 z^{-n} \\
&=1+\frac{1}{z}+\frac{1}{z^{2}}+\frac{1}{z^{3}}+\cdots+\frac{1}{z^{n}}+\cdots \\
& \Rightarrow Z\{u(n)\}=\frac{z}{z-1}
\end{aligned}
$$

10.

$$
Z\left\{\delta(n)=\left\{\begin{array}{l}
1, n=0 \\
0, n \neq 0
\end{array}\right\}=1 \quad \delta(n)=\left\{\begin{array}{l}
1, n=0 \\
0, n \neq 0
\end{array}\right. \text { is Unit impulse sequence }\right.
$$

$$
\begin{aligned}
Z\{\delta(n)\} & =\sum_{n=0}^{\infty} \delta(n) z^{-n} \\
& =1+0+0+\cdots \\
\Rightarrow Z\{\delta(n)\} & =1
\end{aligned}
$$

4.2 Properties of Z-Transforms

1. Linearity: $\boldsymbol{Z}\left\{\boldsymbol{a} \boldsymbol{u}_{\boldsymbol{n}}+\boldsymbol{b} \boldsymbol{v}_{\boldsymbol{n}}\right\}=\boldsymbol{a} \boldsymbol{Z}\left\{\boldsymbol{u}_{\boldsymbol{n}}\right\}+\boldsymbol{b} \boldsymbol{Z}\left\{\boldsymbol{v}_{\boldsymbol{n}}\right\}$

Proof: $Z\left\{a u_{n}+b v_{n}\right\}=\sum_{n=0}^{\infty}\left(a u_{n}+b v_{n}\right) z^{-n}$

$$
\begin{aligned}
& =a \sum_{n=0}^{\infty} u_{n} z^{-n}+b \sum_{n=0}^{\infty} v_{n} z^{-n} \\
& =a Z\left\{u_{n}\right\}+b Z\left\{v_{n}\right\}
\end{aligned}
$$

2. Change of scale (or Damping rule):

If $\boldsymbol{Z}\left\{\boldsymbol{u}_{\boldsymbol{n}}\right\} \equiv \boldsymbol{U}(\mathbf{z})$, then $\boldsymbol{Z}\left\{\boldsymbol{a}^{-\boldsymbol{n}} \boldsymbol{u}_{\boldsymbol{n}}\right\} \equiv \boldsymbol{U}(\boldsymbol{a z})$ and $\boldsymbol{Z}\left\{a^{\boldsymbol{n}} \boldsymbol{u}_{\boldsymbol{n}}\right\} \equiv \boldsymbol{U}\left(\frac{\boldsymbol{z}}{\boldsymbol{a}}\right)$
Proof: $Z\left\{a^{-n} u_{n}\right\}=\sum_{n=0}^{\infty} a^{-n} u_{n} z^{-n}$

$$
=\sum_{n=0}^{\infty} u_{n}(a z)^{-n} \equiv U(a z)
$$

Similarly $Z\left\{a^{n} u_{n}\right\} \equiv U\left(\frac{z}{a}\right)$

Results from application of Damping rule

i.

$$
Z\left\{a^{n} n\right\}=\frac{a z}{(z-a)^{2}}
$$

Proof: $Z\{n\}=\frac{z}{(z-1)^{2}} \equiv U(z)$ say

$$
\therefore Z\left\{a^{n} n\right\} \equiv U\left(\frac{z}{a}\right)=\frac{\frac{z}{a}}{\left(\frac{z}{a}-1\right)^{2}}=\frac{a z}{(z-a)^{2}}
$$

ii.

$$
Z\left\{a^{n} n^{2}\right\}=\frac{a z^{2}+a^{2} z}{(z-a)^{3}}
$$

Proof: $Z\left\{n^{2}\right\}=\frac{z^{2}+z}{(z-1)^{3}} \equiv U(z)$ say

$$
\therefore Z\left\{a^{n} n^{2}\right\} \equiv U\left(\frac{z}{a}\right)=\frac{\left(\frac{z}{a}\right)^{2}+\left(\frac{z}{a}\right)}{\left(\left(\frac{z}{a}\right)-1\right)^{3}}=\frac{a\left(z^{2}+a z\right)}{(z-a)^{3}}
$$

iii.

$$
Z\{\cos n \theta\}=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}, \quad Z\{\sin n \theta\}=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}
$$

Proof: We have $Z\left\{e^{-i n \theta}\right\}=Z\left\{\left(e^{i \theta}\right)^{-n}\right\}=Z\left\{\left(e^{i \theta}\right)^{-n} \cdot 1\right\}$

$$
\begin{aligned}
\text { Now } Z\{1\}= & \frac{z}{z-1} \\
\therefore Z\left\{\left(e^{i \theta}\right)^{-n} \cdot 1\right\} & =\frac{z e^{i \theta}}{z e^{i \theta}-1} \quad \because Z\left\{a^{-n} u_{n}\right\} \equiv U(a z) \\
& =\frac{z}{z-e^{-i \theta}} \\
& =\frac{z\left(z-e^{i \theta}\right)}{\left(z-e^{-i \theta}\right)\left(z-e^{i \theta}\right)}
\end{aligned}
$$

$$
\begin{align*}
& \qquad \frac{z(z-\cos \theta-i \sin \theta)}{z^{2}-z\left(e^{i \theta}+e^{-i \theta}\right)+1} \quad \because e^{i \theta}=\cos \theta+i \sin \theta \\
& =\frac{z(z-\cos \theta-i \sin \theta}{z^{2}-2 z \cos \theta+1} \quad \because \cos \theta=\frac{e^{i \theta}+e^{-i \theta}}{2} \\
& \therefore Z\left\{e^{-i n \theta}\right\}=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}-i \frac{z \sin \theta}{z^{2}-2 z \cos \theta+1} \\
& \Rightarrow Z\{\cos n \theta-i \sin n \theta\}=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}-i \frac{z \sin \theta}{z^{2}-2 z \cos \theta+1} \\
& \therefore Z\{\cos n \theta\}=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1} \tag{3}\\
& \text { and } Z\{\sin n \theta\}=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1} \tag{4}
\end{align*}
$$

iv.

$$
Z\left\{a^{n} \cos n \theta\right\}=\frac{z(z-a \cos \theta)}{z^{2}-2 a z \cos \theta+a^{2}}, \quad Z\left\{a^{n} \sin n \theta\right\}=\frac{a z \sin \theta}{z^{2}-2 z \cos \theta+a^{2}}
$$

By Damping rule, replacing z by $\frac{z}{a}$ in (3)and (4), we get
$Z\left\{a^{n} \cos n \theta\right\}=\frac{z(z-a \cos \theta)}{z^{2}-2 a z \cos \theta+a^{2}}$ and $Z\left\{a^{n} \sin n \theta\right\}=\frac{a z \sin \theta}{z^{2}-2 z \cos \theta+a^{2}}$

3. Right Shifting Property

For $n \geq k, Z\left\{u_{n-\boldsymbol{k}}\right\}=\boldsymbol{z}^{\boldsymbol{k}} \boldsymbol{Z}\left\{\boldsymbol{u}_{\boldsymbol{n}}\right\}, \boldsymbol{k}$ is positive integer
Proof: $Z\left\{u_{n-k}\right\}=\sum_{n=0}^{\infty} u_{n-k} Z^{-n}$

$$
\begin{aligned}
& =u_{-k} z^{0}+u_{1-k} z^{-1}+\cdots+u_{-1} z^{-k+1}+u_{0} z^{-k}+u_{1} z^{-(k+1)}+u_{2} z^{-(k+2)}+\cdots \\
& =0+u_{0} z^{-k}+u_{1} z^{-(k+1)}+u_{2} z^{-(k+2)}+\cdots \quad \because u_{n}=0 \text { for } n<0 \\
& =\sum_{n-k=0}^{\infty} u_{n-k} z^{-n} \\
& =\sum_{m=0}^{\infty} u_{m} z^{-k-m} \\
& =z^{-k} \sum_{m=0}^{\infty} u_{m} z^{-m} \\
& =z^{-k} \sum_{n=0}^{\infty} u_{n} z^{-n} \\
& =z^{-k} Z\left\{u_{n}\right\}
\end{aligned}
$$

4. Left Shifting Property

If \boldsymbol{k} is a positive integer $\boldsymbol{Z}\left\{\boldsymbol{u}_{n+\boldsymbol{k}}\right\}=\boldsymbol{z}^{\boldsymbol{k}}\left[\boldsymbol{Z}\left\{\boldsymbol{u}_{n}\right\}-\boldsymbol{u}_{0}-\frac{u_{1}}{\boldsymbol{z}}-\frac{\boldsymbol{u}_{2}}{\boldsymbol{z}^{2}}-\cdots-\frac{\boldsymbol{u}_{\boldsymbol{k}-1}}{\boldsymbol{z}^{k-1}}\right]$
Proof: $Z\left\{u_{n+k}\right\}=\sum_{n=0}^{\infty} u_{n+k} Z^{-n}$

$$
\begin{aligned}
= & z^{k} \sum_{n=0}^{\infty} u_{n+k} z^{-(n+k)} \\
= & z^{k}\left[u_{k} z^{-k}+u_{1+k} z^{-(1+k)}+u_{2+k} z^{-(2+k)}+\cdots\right] \\
= & z^{k}\left[u_{0}+u_{1} z^{-1}+u_{2} z^{-2}+\cdots+u_{k-1} z^{-(k-1)}+u_{k} z^{-k}+\cdots\right] \\
& -z^{k}\left[u_{0}+u_{1} z^{-1}+u_{2} z^{-2}+\cdots+u_{k-1} z^{-(k-1)}\right] \\
= & z^{k}\left[\sum_{n=0}^{\infty} u_{n} z^{-n}-\sum_{n=0}^{k-1} u_{n} z^{-n}\right] \\
= & z^{k}\left[\sum_{n=0}^{\infty} u_{n} z^{-n}-\sum_{n=0}^{k-1} u_{n} z^{-n}\right] \\
= & z^{k}\left[Z\left\{u_{n}\right\}-u_{0}-\frac{u_{1}}{z}-\frac{u_{2}}{z^{2}}-\cdots-\frac{u_{k-1}}{z^{k-1}}\right]
\end{aligned}
$$

In particular for $k=1,2,3$

$$
\begin{aligned}
& Z\left\{u_{n+1}\right\}=z\left[Z\left\{u_{n}\right\}-u_{0}\right] \\
& Z\left\{u_{n+2}\right\}=z^{2}\left[Z\left\{u_{n}\right\}-u_{0}-\frac{u_{1}}{z}\right]
\end{aligned}
$$

$$
Z\left\{u_{n+3}\right\}=z^{3}\left[Z\left\{u_{n}\right\}-u_{0}-\frac{u_{1}}{z}-\frac{u_{2}}{z^{2}}\right]
$$

5. Initial Value theorem:

If $\boldsymbol{Z}\left\{\boldsymbol{u}_{\boldsymbol{n}}\right\}=\boldsymbol{U}(\mathbf{z})$, then $\boldsymbol{u}_{\mathbf{0}}=\lim _{\boldsymbol{z} \rightarrow \infty} \boldsymbol{U}(\mathbf{z})$

$$
\begin{aligned}
& u_{1}=\lim _{z \rightarrow \infty} z\left[U(z)-u_{0}\right] \\
& u_{2}=\lim _{z \rightarrow \infty} z^{2}\left[U(z)-u_{0}-\frac{u_{1}}{z}\right]
\end{aligned}
$$

$$
\vdots
$$

Proof: By definition $U(z)=Z\left\{u_{n}\right\}=\sum_{n=0}^{\infty} u_{n} z^{-n}$

$$
\begin{gather*}
\Rightarrow U(z)=u_{0}+\frac{u_{1}}{z}+\frac{u_{2}}{z^{2}}+\frac{u_{3}}{z^{3}}+\cdots \tag{5}\\
\therefore u_{0}=\lim _{z \rightarrow \infty} U(z)=\lim _{z \rightarrow \infty}\left[u_{0}+\frac{u_{1}}{z}+\frac{u_{2}}{z^{2}}+\frac{u_{3}}{z^{3}}+\cdots\right] \\
=u_{0}+0+0+0+\cdots=u_{0}
\end{gather*}
$$

Again from(5), we get

$$
\begin{aligned}
& U(z)-u_{0}=\frac{u_{1}}{z}+\frac{u_{2}}{z^{2}}+\frac{u_{3}}{z^{3}}+\cdots \\
\Rightarrow & z\left[U(z)-u_{0}\right]=u_{1}+\frac{u_{2}}{z}+\frac{u_{3}}{z^{2}}+\cdots \\
\Rightarrow & \lim _{z \rightarrow \infty} z\left[U(z)-u_{0}\right]=\lim _{z \rightarrow \infty}\left[u_{1}+\frac{u_{2}}{z}+\frac{u_{3}}{z^{2}}+\cdots\right]=u_{1} \\
& \text { Similarly } u_{2}=\lim _{z \rightarrow \infty} z^{2}\left[U(z)-u_{0}-\frac{u_{1}}{z}\right]
\end{aligned}
$$

Note: Initial value theorem may be used to determine the sequence u_{n} from the given function $U(z)$

6. Final Value theorem:

$$
\begin{aligned}
& \text { If } \boldsymbol{Z}\left\{\boldsymbol{u}_{\boldsymbol{n}}\right\}=\boldsymbol{U}(\mathbf{z}) \text {, then } \lim _{n \rightarrow \infty} \boldsymbol{u}_{\boldsymbol{n}}=\lim _{\boldsymbol{z} \rightarrow \mathbf{1}}(\mathbf{z}-\mathbf{1}) \boldsymbol{U}(\mathbf{z}) \\
& \text { Proof: } Z\left\{u_{n+1}-u_{n}\right\}=\sum_{n=0}^{\infty}\left(u_{n+1}-u_{n}\right) z^{-n} \\
& \quad \Rightarrow Z\left\{u_{n+1}\right\}-Z\left\{u_{n}\right\}=\sum_{n=0}^{\infty}\left(u_{n+1}-u_{n}\right) z^{-n} \\
& \quad \Rightarrow z\left[Z\left\{u_{n}\right\}-u_{0}\right]-Z\left\{u_{n}\right\}=\sum_{n=0}^{\infty}\left(u_{n+1}-u_{n}\right) z^{-n}
\end{aligned}
$$

By using left shifting property for $k=1$
$\Rightarrow(z-1) Z\left\{u_{n}\right\}-u_{0}=\sum_{n=0}^{\infty}\left(u_{n+1}-u_{n}\right) z^{-n}$

$$
\text { or }(z-1) U(z)-u_{0}=\sum_{n=0}^{\infty}\left(u_{n+1}-u_{n}\right) z^{-n} \quad \because Z\left\{u_{n}\right\}=U(z)
$$

Taking limits $z \rightarrow 1$ on both sides

$$
\begin{aligned}
& \left.\begin{array}{rl}
\lim _{z \rightarrow 1}(z-1) U(z)-u_{0} & =\sum_{n=0}^{\infty}\left(u_{n+1}-u_{n}\right) \\
\text { or } \lim _{z \rightarrow 1}(z-1) U(z)-u_{0} & =\lim _{n \rightarrow \infty}\left[\left(u_{1}-u_{0}\right)+\left(u_{2}-u_{1}\right)+\cdots+\left(u_{n+1}-u_{n}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[u_{n+1}\right]-u_{0} \\
\underset{z \rightarrow 1}{\Rightarrow \lim _{z \rightarrow 1}(z-1) U(z)=}
\end{array}\right)=u_{\infty}
\end{aligned}
$$

$$
\text { or } \lim _{z \rightarrow 1}(z-1) U(z)=\lim _{n \rightarrow \infty} u_{n}
$$

Note: Initial value and final value theorems determine the value of u_{n} for $n=0$ and for $n \rightarrow \infty$ from the given function $U(z)$.

7. Convolution theorem

Convolution of two sequences u_{n} and v_{n} is defined as $u_{n} * v_{n}=\sum_{m=0}^{n} u_{m} v_{n-m}$ Convolution theorem for Z-transforms states that
If $\boldsymbol{U}(\mathbf{z})=\boldsymbol{Z}\left\{\boldsymbol{u}_{\boldsymbol{n}}\right\}$ and $\boldsymbol{V}(\mathbf{z})=\boldsymbol{Z}\left\{\boldsymbol{v}_{\boldsymbol{n}}\right\}$, then $\boldsymbol{Z}\left\{\boldsymbol{u}_{\boldsymbol{n}} * \boldsymbol{v}_{\boldsymbol{n}}\right\}=\boldsymbol{U}(\mathbf{z}) . \boldsymbol{V}(\mathbf{z})$
Proof: $U(z) . V(z)=Z\left\{u_{n}\right\} . Z\left\{v_{n}\right\}$

$$
=\left[\sum_{n=0}^{\infty} u_{n} z^{-n}\right] \cdot\left[\sum_{n=0}^{\infty} v_{n} z^{-n}\right]
$$

$$
\begin{aligned}
& =\left[u_{0}+\frac{u_{1}}{z}+\frac{u_{2}}{z^{2}}+\cdots+\frac{u_{n}}{z^{n}}+\cdots\right] \cdot\left[v_{0}+\frac{v_{1}}{z}+\frac{v_{2}}{z^{2}}+\cdots+\frac{v_{n}}{z^{n}}+\cdots\right] \\
& =\left(u_{0} v_{0}\right)+\left(u_{0} v_{1}+u_{1} v_{0}\right) z^{-1}+\left(u_{0} v_{2}+u_{1} v_{1}+u_{2} v_{0}\right) z^{-2}+\cdots \\
& =\sum_{n=0}^{\infty}\left(u_{0} v_{n}+u_{1} v_{n-1}+u_{2} v_{n-2}+\cdots+u_{n} v_{0}\right) z^{-n} \\
& =\sum_{n=0}^{\infty}\left(\sum_{m=0}^{n} u_{m} v_{n-m}\right) z^{-n} \\
\Rightarrow U(z) \cdot V(z)=Z\left\{\sum_{m=0}^{n} u_{m} v_{n-m}\right\} \quad & \because \sum_{n=0}^{\infty} u_{n} z^{-n}=Z\left\{u_{n}\right\} \\
\Rightarrow U(z) \cdot V(z)=Z\left\{u_{n} * v_{n}\right\} \quad & \because u_{n} * v_{n}=\sum_{m=0}^{n} u_{m} v_{n-m}
\end{aligned}
$$

Example1 Find the Z-transform of $2 n+3 \sin \frac{n \pi}{4}-5 a^{4}$
Solution: By linearity property

$$
\begin{aligned}
Z\left\{2 n+3 \sin \frac{n \pi}{4}-5 a^{4}\right\} & =2 Z\{n\}+3 Z\left\{\sin \frac{n \pi}{4}\right\}-5 Z\left\{a^{4}\right\} \\
& =2 Z\{n\}+3 Z\left\{\sin \frac{n \pi}{4}\right\}-5 a^{4} Z\{1\} \\
& =\frac{2 z}{(z-1)^{2}}+\frac{3 z \sin \frac{\pi}{4}}{z^{2}-2 z \cos \frac{\pi}{4}+1}-\frac{5 a^{4} z}{z-1} \\
\because Z\{n\}= & \frac{z}{(z-1)^{2}}, Z\{\sin n \theta\}=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}, Z\{1\}=\frac{z}{z-1} \\
\therefore Z\left\{2 n+3 \sin \frac{n \pi}{4}-5 a^{4}\right\}= & \frac{2 z}{(z-1)^{2}}+\frac{\frac{3 z}{\sqrt{2}}}{z^{2}-\sqrt{2} z+1}-\frac{5 a^{4} z}{z-1}
\end{aligned}
$$

Example2 Find the Z-transform of the sequence $\{4,8,16,32, \ldots\}$
Solution: $u_{n}=2^{n+2}, \quad n=0,1,2,3 \ldots$

$$
\begin{aligned}
Z\left\{2^{n+2}\right\} & =Z\left\{2^{2} 2^{n}\right\} \\
& =4 Z\left\{2^{n}\right\}=\frac{4 z}{z-2},\left|\frac{2}{z}\right|<1 \because Z\left\{a^{n}\right\}=\frac{z}{z-a},\left|\frac{a}{z}\right|<1
\end{aligned}
$$

Example3 Find the Z-transform of $(n+1)^{2}$
Solution: $Z\left\{(n+1)^{2}\right\}=Z\left\{n^{2}+2 n+1\right\}$

$$
\begin{aligned}
& =Z\left\{n^{2}\right\}+2 Z\{n\}+Z\{1\} \\
& =\frac{z^{2}+z}{(z-1)^{3}}+\frac{2 z}{(z-1)^{2}}+\frac{z}{z-1} \\
\because & Z\left\{n^{2}\right\}=\frac{z^{2}+z}{(z-1)^{3}}, Z\{n\}=\frac{z}{(z-1)^{2}}, Z\{1\}=\frac{z}{z-1}
\end{aligned}
$$

Example4 Find the Z-transform of

$$
\begin{array}{llll}
\text { i. } n \cos n \theta & \text { ii. } \sin \left(\frac{n \pi}{2}+\frac{\pi}{4}\right) & \text { iii. } e^{-2 n} & \text { iv. } a^{|n|}
\end{array}
$$

Solution: i. $Z\{\cos n \theta\}=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}$

$$
\begin{aligned}
& \therefore Z\{n \cos n \theta\}=-z \frac{d}{d z}\left[\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1}\right] \\
& \because Z\left\{n u_{n}\right\}=-Z \frac{d}{d z} Z\left\{u_{n}\right\} \\
&=-Z\left[\frac{-z^{2} \cos \theta+2 z-\cos \theta}{\left(z^{2}-2 z \cos \theta+1\right)^{2}}\right] \\
&=\frac{z^{3} \cos \theta-2 z^{2}+z \cos \theta}{\left(z^{2}-2 z \cos \theta+1\right)^{2}}
\end{aligned}
$$

ii. $Z\left\{\sin \left(\frac{n \pi}{2}+\frac{\pi}{4}\right)\right\}=Z\left\{\sin \frac{n \pi}{2} \cos \frac{\pi}{4}+\cos \frac{n \pi}{2} \sin \frac{\pi}{4}\right\}$

$$
=\cos \frac{\pi}{4} Z\left\{\sin \frac{n \pi}{2}\right\}+\sin \frac{\pi}{4} Z\left\{\cos \frac{n \pi}{2}\right\}
$$

$$
\begin{aligned}
& =\frac{1}{\sqrt{2}}\left[\frac{z \sin \frac{\pi}{2}}{z^{2}-2 z \cos \frac{\pi}{2}+1}+\frac{z\left(z-\cos \frac{\pi}{2}\right)}{z^{2}-2 z \cos \frac{\pi}{2}+1}\right] \\
& \quad \because Z\{\sin n \theta\}=\frac{z \sin \theta}{z^{2}-2 z \cos \theta+1}, Z\{\cos n \theta\}=\frac{z(z-\cos \theta)}{z^{2}-2 z \cos \theta+1} \\
& =\frac{1}{\sqrt{2}}\left[\frac{z}{z^{2}+1}+\frac{z^{2}}{z^{2}+1}\right]=\frac{1}{\sqrt{2}}\left[\frac{z+z^{2}}{z^{2}+1}\right]
\end{aligned}
$$

iii. $Z\left\{e^{-2 n}\right\}=Z\left\{\left(e^{-2}\right)^{n}\right\}$

$$
\begin{array}{ll}
=\frac{z}{z-e^{-2}} & \because Z\left\{a^{n}\right\}=\frac{z}{z-a} \\
=\frac{z e^{2}}{z e^{2}-1}
\end{array}
$$

$$
\text { iv. } a^{|n|}=\left\{\begin{array}{rr}
a^{-n}, & n<0 \\
a^{n}, & n \geq 0
\end{array}\right.
$$

Taking two sided $Z-$ transform: $Z\left\{a^{|n|}\right\}=\sum_{n=-\infty}^{\infty} a^{|n|} Z^{-n}$

$$
\begin{array}{rlrl}
\therefore Z\left\{a^{|n|}\right\} & =\sum_{-\infty}^{-1} a^{-n} z^{-n}+\sum_{0}^{\infty} a^{n} z^{-n} \\
& =\left[\ldots+a^{3} z^{3}+a^{2} z^{2}+a z\right]+\left[1+\frac{a}{z}+\frac{a^{2}}{z^{2}}+\frac{a^{3}}{z^{3}}+\cdots\right] \\
& =\frac{a z}{1-a z}+\frac{1}{1-\frac{a}{z}}, & & |a z|<1 \text { and }\left|\frac{a}{z}\right|<1 \\
& =\frac{a z}{1-a z}+\frac{z}{z-a}, & & |z|<\frac{1}{|a|} \text { and }|a|<|z| \\
& =\frac{z(1-a z)}{(1-a z)(z-a)}, & & |a|<|z|<\frac{1}{|a|} \\
\Rightarrow Z\left\{a^{|n|}\right\} & =\frac{z}{(z-a)}, & & |a|<|z|<\frac{1}{|a|}
\end{array}
$$

Example 5 Find the Z-transform of $u_{n}= \begin{cases}2^{n}, & n<0 \\ 3^{n}, & n \geq 0\end{cases}$
Taking two sided $Z-$ transform: $Z\left\{u_{n}\right\}=\sum_{n=-\infty}^{\infty} u_{n} Z^{-n}$

$$
\begin{array}{rlrl}
\therefore Z\left\{u_{n}\right\} & =\sum_{-\infty}^{-1} 2^{n} z^{-n}+\sum_{0}^{\infty} 3^{n} z^{-n} \\
& =\left[\ldots+\frac{z^{3}}{2^{3}}+\frac{z^{2}}{2^{2}}+\frac{z}{2}\right]+\left[1+\frac{3}{z}+\frac{3^{2}}{z^{2}}+\frac{3^{3}}{z^{3}}+\cdots\right] \\
& =\frac{\frac{z}{2}}{1-\frac{z}{2}}+\frac{1}{1-\frac{3}{z}}, & & \left|\frac{z}{2}\right|<1 \text { and }\left|\frac{3}{z}\right|<1 \\
& =\frac{z}{2-z}+\frac{z}{z-3}, & & |z|<|2| \text { and }|3|<|z| \\
& =\frac{z(z-3+z(2-z)}{(2-z)(z-3)}, & & |3|<|z|<|2| \\
\Rightarrow Z\left\{u_{n}\right\} & =\frac{z}{z^{2}-5 z+6}, & & 3<|z|<2
\end{array}
$$

$\therefore Z$-transform does not exist for $u_{n}=\left\{\begin{array}{l}2^{n}, n<0 \\ 3^{n}, n \geq 0\end{array}\right.$ as the set $3<|z|<2$ is infeasible.
Example6 Find the Z-transform of
i. ${ }^{n} C_{r} 0 \leq r \leq n$
ii. ${ }^{n+r} C_{r}$
iii. $\frac{1}{(n+r)!}$
iv. $\frac{1}{(n-r)!}$

Solution: i. $Z\left\{{ }^{n} C_{r}\right\}=\sum_{r=0}^{n}{ }^{n} C_{r} Z^{-r}$

$$
\begin{aligned}
& =1+{ }^{n} C_{1} z^{-1}+{ }^{n} C_{2} z^{-2}+\cdots+{ }^{n} C_{n} z^{-n} \\
& =\left(1+z^{-1}\right)^{n}
\end{aligned}
$$

ii. $Z\left\{{ }^{n+r} C_{r}\right\}=\sum_{r=0}^{\infty}{ }^{n+r} C_{r} Z^{-r}$

$$
\begin{aligned}
& =1+{ }^{n+1} C_{1} z^{-1}+{ }^{n+2} C_{2} z^{-2}+{ }^{n+3} C_{3} z^{-3}+\cdots \\
& =1+(n+1) z^{-1}+\frac{(n+2)(n+1)}{2!} z^{-2}+\frac{(n+3)(n+2)(n+1)}{3!} z^{-3}+\cdots
\end{aligned}
$$

$$
\begin{aligned}
& =1+(-n-1)\left(-z^{-1}\right)+\frac{(-n-1)(-n-2)}{2!}\left(-z^{-1}\right)^{-2} \\
& \quad+\frac{(-n-1)(-n-2)(-n-3)}{3!}\left(-z^{-1}\right)^{-3}+\cdots \\
& =\left(1-z^{-1}\right)^{-n-1}
\end{aligned}
$$

Example 7 Find the Z-transform of
i. $\frac{1}{n!}$
ii. $\frac{1}{(n+r)!}$
iii. $\frac{1}{(n-r)!}$
i. $Z\left\{\frac{1}{n!}\right\}=\sum_{n=0}^{\infty} \frac{1}{n!} z^{-n}=1+\frac{1}{1!} z^{-1}+\frac{1}{2!} z^{-2}+\frac{1}{3!} z^{-3}+\cdots$ $=1+\frac{1}{1!} \frac{1}{z}+\frac{1}{2!} \frac{1}{z^{2}}+\frac{1}{3!} \frac{1}{z^{3}}+\cdots=e^{\frac{1}{z}}$

$$
\Rightarrow Z\left\{\frac{1}{n!}\right\}=e^{\frac{1}{z}}
$$

ii. $Z\left\{\frac{1}{(n+r)!}\right\}=\sum_{n=0}^{\infty} \frac{1}{(n+r)!} z^{-n}$

Now $Z\left\{\frac{1}{n!}\right\}=e^{\frac{1}{Z}}$
Also from left shifting property $Z\left\{u_{n+k}\right\}=z^{k}\left[Z\left\{u_{n}\right\}-u_{0}-\frac{u_{1}}{z}-\frac{u_{2}}{z^{2}}-\cdots-\frac{u_{k-1}}{z^{k-1}}\right]$

$$
\therefore Z\left\{\frac{1}{(n+r)!}\right\}=z^{r}\left[e^{\frac{1}{z}}-1-\frac{1}{z}-\frac{1}{2!z^{2}}-\cdots-\frac{1}{(r-1)!z^{r-1}}\right]
$$

In particular $\left\{\frac{1}{(n+1)!}\right\}=z^{1}\left[e^{\frac{1}{z}}-1\right]$

$$
\left\{\frac{1}{(n+2)!}\right\}=z^{2}\left[e^{\frac{1}{z}}-1-\frac{1}{z}\right]
$$

\vdots
iii. $Z\left\{\frac{1}{(n-r)!}\right\}=\sum_{n=0}^{\infty} \frac{1}{(n-r)!} z^{-n}$

Now $Z\left\{\frac{1}{n!}\right\}=e^{\frac{1}{Z}}$
Also from right shifting property, $Z\left\{u_{n-k}\right\}=z^{-k} Z\left\{u_{n}\right\}, k$ is positive integer

$$
\therefore Z\left\{\frac{1}{(n-r)!}\right\}=z^{-r} e^{\frac{1}{z}}
$$

In particular $\left\{\frac{1}{(n-1)!}\right\}=z^{-1} e^{\frac{1}{z}}$

$$
\left\{\frac{1}{(n+2)!}\right\}=z^{-2} e^{\frac{1}{z}}
$$

Example8 Find $Z\left\{u_{n+2}\right\}$ if $Z\left\{u_{n}\right\}=\frac{z}{z-1}+\frac{z}{z^{2}+1}$
Solution: Given $Z\left\{u_{n}\right\}=U(z)=\frac{z}{z-1}+\frac{z}{z^{2}+1}$
From left shifting property $Z\left\{u_{n+2}\right\}=z^{2}\left[Z\left\{u_{n}\right\}-u_{0}-\frac{u_{1}}{z}\right]$
Now from initial value theorem $u_{0}=\lim _{z \rightarrow \infty} U(z)$

$$
=\lim _{z \rightarrow \infty}\left[\frac{z}{z-1}+\frac{z}{z^{2}+1}\right]
$$

$$
\begin{align*}
& =\lim _{z \rightarrow \infty}\left[\frac{1}{1-\frac{1}{z}}+\frac{\frac{1}{z}}{1+\frac{1}{z^{2}}}\right]=1+0 \\
\therefore u_{0} & =1 \tag{2}
\end{align*}
$$

Also from initial value theorem $u_{1}=\lim _{z \rightarrow \infty} z\left[U(z)-u_{0}\right]$

$$
\begin{align*}
& =\lim _{z \rightarrow \infty} Z\left[\frac{z}{z-1}+\frac{z}{z^{2}+1}-1\right] \\
& =\lim _{z \rightarrow \infty} Z\left[\frac{2 z^{2}-z+1}{\left(z^{2}+1\right)(z-1)}\right]=2 \\
\therefore u_{1} & =2 \tag{3}
\end{align*}
$$

Using (2)and (3) in (1), we get $Z\left\{u_{n+2}\right\}=z^{2}\left[\frac{z}{z-1}+\frac{z}{z^{2}+1}-1-\frac{2}{z}\right]$

$$
\Rightarrow Z\left\{u_{n+2}\right\}=\frac{z\left(z^{2}-z+2\right)}{(z-1)\left(z^{2}+1\right)}
$$

Example9 Verify convolution theorem for $u_{n}=n$ and $v_{n}=1$
Solution: Convolution theorem states that $Z\left\{u_{n} * v_{n}\right\}=U(z) . V(z)$
We know that $u_{n} * v_{n}=\sum_{m=0}^{n} u_{m} v_{n-m}$

$$
\begin{gather*}
=\sum_{m=0}^{n} m \cdot 1 \\
=0+1+2+3+\cdots+n=\frac{n(n+1)}{2} \\
\Rightarrow Z\left\{u_{n} * v_{n}\right\}=\sum_{n=0}^{\infty} \frac{n(n+1)}{2} z^{-n}=\frac{1}{2}\left[\sum_{n=0}^{\infty} n^{2} z^{-n}+\sum_{n=0}^{\infty} n z^{-n}\right] \\
=\frac{1}{2}\left[Z\left\{n^{2}\right\}+Z\{n\}\right] \\
=\frac{1}{2}\left[\frac{z(z+1)}{(z-1)^{3}}+\frac{z}{(z-1)^{2}}\right]=\frac{1}{2}\left[\frac{z(z+1)+z(z-1)}{(z-1)^{3}}\right]=\frac{1}{2}\left[\frac{2 z^{2}}{(z-1)^{3}}\right] \\
\therefore Z\left\{u_{n} * v_{n}\right\}=\frac{z^{2}}{(z-1)^{3}} \tag{1}\\
\text { Also } U(z)=Z\{n\}=\frac{z}{(z-1)^{2}} \text { and } V(z)=Z\{1\}=\frac{z}{z-1} \\
\Rightarrow U(z) \cdot V(z)=\frac{z^{2}}{(z-1)^{3}}
\end{gather*}
$$

From (1) and (2) $Z\left\{u_{n} * v_{n}\right\}=U(z) . V(z)$
Example10 If $u_{n}=\delta(n)-\delta(n-1), v_{n}=2 \delta(n)+\delta(n-1)$, Find the Z-transform of their convolution.
Solution: $U(z)=Z\{\delta(n)-\delta(n-1)\}, V(z)=Z\{2 \delta(n)+\delta(n-1)\}$
Now $Z\{\delta(n)\}=1$ and $Z\{\delta(n-1)\}=z^{-1} \quad \because Z\left\{u_{n-k}\right\}=z^{-k} Z\left\{u_{n}\right\}$
$\therefore U(z)=1-z^{-1}$ and $V(z)=2+z^{-1}$
Also $Z\left\{u_{n} * v_{n}\right\}=U(z) \cdot V(z)$
$\Rightarrow Z\left\{u_{n} * v_{n}\right\}=\left(1-z^{-1}\right)\left(2+z^{-1}\right)=2-z^{-1}-z^{-2}$

4.3 Inverse Z-Transform

Given a function $U(z)$, we can find the sequence u_{n} by one of the following methods

- Inspection (Direct inversion)
- Direct division
- Partial fractions
- Residues (Inverse integral)
- Power-Series
- Convolution theorem

4.3.1 Inspection (Direct inversion) method

Sometimes by observing the coefficients in the given series $U(z)$, it is possible to find the sequence u_{n} as illustrated in the given examples.

Example 11 Find u_{n} if $U(z)=1+\frac{1}{2} z^{-1}+\frac{1}{4} z^{-2}+\frac{1}{8} z^{-3}+\cdots$
Solution: Given that $U(z)=\sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{n} z^{-n}$
Also by the definition of Z-transform $U(z)=\sum_{n=0}^{\infty} u_{n} z^{-n}$
.Comparing (1)and (2), we get $u_{n}=\left(\frac{1}{2}\right)^{n}$
Example12 Find u_{n} if $U(z)=\frac{z^{3}}{(z-1)^{3}}$
Solution: $U(z)=\frac{z^{3}}{(z-1)^{3}}=\left(\frac{z-1}{z}\right)^{-3}=\left(1-\frac{1}{z}\right)^{-3}$
$\therefore U(z)=1+\frac{3}{z}+\frac{6}{z^{2}}+\frac{10}{z^{3}}+\cdots$
$\because(1-x)^{-n}=1+n x+\frac{n(n+1)}{2!} x^{2}+\frac{n(n+1)(n+2)}{3!} x^{3}+\cdots$
$\Rightarrow U(z)=\sum_{n=0}^{\infty} \frac{(n+1)(n+2)}{2} z^{-n}$
Comparing with $U(z)=\sum_{n=0}^{\infty} u_{n} Z^{-n}$, we get $u_{n}=\frac{(n+1)(n+2)}{2}$
Example 13 Find inverse Z-transform of $3+\frac{2 z}{z-1}-\frac{z}{2 z-1}$
Solution: Given that $U(z)=3+\frac{2 z}{z-1}-\frac{z}{2 z-1}$

$$
\begin{aligned}
& \therefore u_{n}=3 Z^{-1}[1]+2 Z^{-1}\left[\frac{z}{z-1}\right]-\frac{1}{2} Z^{-1}\left[\frac{z}{z-\frac{1}{2}}\right] \\
& \Rightarrow u_{n}=3 \delta(n)+2 u(n)-\frac{1}{2}\left(\frac{1}{2}\right)^{n}=3 \delta(n)+2 u(n)-\left(\frac{1}{2}\right)^{n+1} \\
& \quad \because Z^{-1}[1]=\delta(n), Z^{-1}\left[\frac{z}{z-1}\right]=u(n), Z^{-1}\left[\frac{z}{z-a}\right]=a^{n} \text { where } \delta(n) \text { and } \\
& \\
& \quad u(n) \text { are unit impulse and unit step sequences respectively. }
\end{aligned}
$$

Example14 Find inverse Z-transform of $2 z^{-2}-\frac{z^{-3}}{z-1}+\frac{2 z^{-5}}{2 z-1}$
Solution: Given that $U(z)=2 z^{-2}-\frac{z^{-3}}{z-1}+\frac{2 z^{-5}}{2 z-1}$

$$
\begin{aligned}
& \therefore u_{n}=2 Z^{-1}\left[Z^{-2} \cdot 1\right]-Z^{-1}\left[Z^{-4} \cdot \frac{z}{z-1}\right]+Z^{-1}\left[Z^{-6} \frac{z}{z-\frac{1}{2}}\right] \\
& \Rightarrow u_{n}=2 \delta(n-2)-u(n-4)+\left(\frac{1}{2}\right)^{n-6} u(n-6)
\end{aligned}
$$

\because From Right shifting property $Z^{-1}\left[Z^{-k} U(Z)\right]=u_{n-k}$

4.3.2 Direct division method

Direct division is one of the simplest methods for finding inverse Z-transform and can be used for almost every type of expression given in fractional form.
Example15 Find the inverse Z-transform of $\frac{z}{z^{2}-3 z+2}$

Solution: Given that $U(z)=\frac{z}{z^{2}-3 z+2}$
By actual division, we get

$$
\left.\begin{array}{c}
z ^ { 2 } - 3 z + 2 \longdiv { z ^ { - 1 } + 3 z ^ { - 2 } + 7 z ^ { - 3 } } \\
\frac{z-3+2 z^{-1}}{3-2 z^{-1}} \\
\frac{3-9 z^{-1}+6 z^{-2}}{7 z^{-1}-6 z^{-2}} \\
\frac{7 z^{-1}-21 z^{-2}+14 z^{-3}}{15 z^{-2}-14 z^{-3}} \\
\vdots
\end{array}\right] \begin{gathered}
\Rightarrow U(z)=z^{-1}+3 z^{-2}+7 z^{-3}+\cdots \\
=\sum_{n=0}^{\infty}\left(2^{n}-1\right) z^{-n} \\
\therefore u_{n}=2^{n}-1
\end{gathered}
$$

Example16 Find the inverse Z-transform of $\frac{4 z^{2}+2 z}{2 z^{2}-3 z+1}$
Solution: Given that $U(z)=\frac{4 z^{2}+2 z}{2 z^{2}-3 z+1}$, by actual division, we get

$$
\begin{gathered}
2 z ^ { 2 } - 3 z + 1 \longdiv { 2 + 4 z ^ { - 1 } + 5 z ^ { - 2 } } \begin{array} { c }
{ \frac { 4 z ^ { 2 } + 2 z } { \frac { 4 z ^ { 2 } - 6 z + 2 } { 8 z - 2 } } } \\
{ \frac { 8 z - 1 2 + 4 z ^ { - 1 } } { 1 0 - 4 z ^ { - 1 } } } \\
{ \frac { 1 0 - 1 5 z ^ { - 1 } + 5 z ^ { - 2 } } { 1 1 z ^ { - 1 } - 5 z ^ { - 2 } } } \\
{ \vdots }
\end{array} \\
\Rightarrow U(z)=2+4 z^{-1}+5 z^{-2}+\cdots \\
=\sum_{n=0}^{\infty}\left(6-2^{2-n}\right) z^{-n} \\
\therefore u_{n}=6-2^{2-n} \\
\therefore u_{n}=6-4\left(\frac{1}{2}\right)^{n}
\end{gathered}
$$

4.3.3 Partial fractions method

Partial fractions method can be used only if order of expression in the numerator is less than or equal to that in the denominator. If order of expression in the numerator is greater, then the fraction may be brought to desired form by direct division. Partial fractions are formed of the expression $\frac{U(z)}{z}$ as demonstrated in the examples below.
Example17 Find the inverse Z-transform of $\frac{z}{6 z^{2}-5 z+1}$
Solution: Given that $U(z)=\frac{z}{6 z^{2}-5 z+1}$

$$
\begin{aligned}
\therefore \frac{U(z)}{z} & =\frac{1}{6 z^{2}-5 z+1}=\frac{1}{(2 z-1)(3 z-1)} \\
\Rightarrow \frac{U(z)}{z} & =\frac{2}{2 z-1}-\frac{3}{3 z-1} \\
\Rightarrow U(z) & =\frac{z}{z-\frac{1}{2}}-\frac{z}{z-\frac{1}{3}} \\
\therefore u_{n} & =\left(\frac{1}{2}\right)^{n}-\left(\frac{1}{3}\right)^{n} \quad \because Z\left\{a^{n}\right\}=\frac{z}{z-a} \text { or } Z^{-1}\left[\frac{z}{z-a}\right]=a^{n}
\end{aligned}
$$

i.e. $u_{n}=2^{-n}-3^{-n}$

Example18 Find the inverse Z-transform of $\frac{4 z^{2}+2 z}{2 z^{2}-3 z+1}$
Solution: Given that $U(z)=\frac{4 z^{2}-2 z}{2 z^{2}-3 z+1}=\frac{2 z(2 z-1)}{(2 z-1)(z-1)}$

$$
\therefore \frac{U(z)}{z}=\frac{2(2 z+1)}{(2 z-1)(z-1)}
$$

By partial fractions, we get

$$
\begin{aligned}
\frac{U(z)}{z} & =\frac{-8}{2 z-1}+\frac{6}{z-1} \\
\Rightarrow U(z) & =\frac{-8 z}{2 z-1}+\frac{6 z}{z-1} \\
\therefore u_{n} & =-4 Z^{-1}\left[\frac{z}{z-\frac{1}{2}}\right]+6 Z^{-1}\left[\frac{z}{z-1}\right] \\
\Rightarrow u_{n} & =-4\left(\frac{1}{2}\right)^{n}+6(1)^{n} \because Z^{-1}\left[\frac{z}{z-a}\right]=a^{n} \\
\quad & \text { i.e. } u_{n}=-4\left(\frac{1}{2}\right)^{n}+6
\end{aligned}
$$

Example19 Find the inverse Z-transform of $\frac{1}{\left(1-z^{-1}\right)\left(2-z^{-1}\right)}$
Solution: Given that $U(z)=\frac{1}{\left(1-z^{-1}\right)\left(2-z^{-1}\right)}$
Multiplying and dividing by z^{2}, we get

$$
\begin{aligned}
& U(z)=\frac{z^{2}}{z\left(1-z^{-1}\right) z\left(2-z^{-1}\right)}=\frac{z^{2}}{(z-1)(2 z-1)} \\
& \therefore \frac{U(z)}{z}=\frac{z}{(z-1)(2 z-1)}
\end{aligned}
$$

By partial fractions, we get

$$
\begin{aligned}
\frac{U(z)}{z} & =\frac{1}{(z-1)}-\frac{1}{(2 z-1)} \\
\Rightarrow U(z) & =\frac{z}{(z-1)}-\frac{z}{(2 z-1)} \\
\therefore u_{n} & =Z^{-1}\left[\frac{z}{(z-1)}\right]-\frac{1}{2} Z^{-1}\left[\frac{z}{z-\frac{1}{2}}\right] \\
\Rightarrow u_{n} & =(1)^{n}-\frac{1}{2}\left(\frac{1}{2}\right)^{n} \because Z^{-1}\left[\frac{z}{z-a}\right]=a^{n} \\
& \quad \text { i.e. } u_{n}=1-\left(\frac{1}{2}\right)^{n+1}
\end{aligned}
$$

Example20 Find the inverse Z-transform of $\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}$
Solution: Given that $U(z)=\frac{4 z^{2}-2 z}{z^{3}-5 z^{2}+8 z-4}=\frac{2 z(2 z-1)}{(z-1)(z-2)^{2}}$

$$
\therefore \frac{U(z)}{z}=\frac{2(2 z-1)}{(z-1)(z-2)^{2}}
$$

By partial fractions, we get

$$
\begin{aligned}
\frac{U(z)}{z} & =\frac{2}{z-1}-\frac{2}{z-2}+\frac{6}{(z-2)^{2}} \\
\Rightarrow U(z) & =\frac{2 z}{z-1}-\frac{2 z}{z-2}+\frac{6 z}{(z-2)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\therefore & u_{n}=2 Z^{-1}\left[\frac{z}{z-1}\right]-2 Z^{-1}\left[\frac{z}{z-2}\right]+3 Z^{-1}\left[\frac{2 z}{(z-2)^{2}}\right] \\
\Rightarrow & u_{n}=2(1)^{n}-2(2)^{n}+3 n(2)^{n} \because Z^{-1}\left[\frac{z}{z-a}\right]=a^{n} \text { and } Z^{-1}\left[\frac{a z}{(z-a)^{2}}\right]=n a^{n} \\
\quad & \text { i.e. } u_{n}=2-2^{n+1}+3 n .2^{n}
\end{aligned}
$$

4.3.4 Method of residues (Inverse integral)

By using the theory of complex variables, it can be shown that the inverse Z-transform is given by $u_{n}=\frac{1}{2 \pi i} \oint_{c} U(z) z^{n-1} d z=$ sum of residues of $U(z)$
where c is the closed contour which contains all the insolated singularities of $U(z)$ in the region of convergence.
Method of residues is one of the most efficient methods and can be used to find the inverse Z - transform where partial fractions are tedious to find.
Example21 Find the inverse z-transform of $\frac{z}{z^{2}+7 z+10}$
Solution: $\quad U(z)=\frac{z}{z^{2}+7 z+10}$

$$
\text { Now } \begin{aligned}
u_{n} & =\frac{1}{2 \pi i} \oint_{c} U(z) z^{n-1} d z \\
\Rightarrow u_{n} & =\frac{1}{2 \pi i} \oint_{c} \frac{z}{z^{2}+7 z+10} z^{n-1} d z \\
& =\frac{1}{2 \pi i} \oint_{c} \frac{z^{n}}{z^{2}+7 z+10} d z \\
& =\frac{1}{2 \pi i} \oint_{c} \frac{z^{n}}{(z+2)(z+5)} d z
\end{aligned}
$$

There are two simple poles at $z=-2$ and $z=-5$
Residue at $z=-2$ is given by $\lim _{z \rightarrow-2}(z+2) \frac{z^{n}}{(z+2)(z+5)}=\frac{(-2)^{n}}{3}$
Residue at $z=-5$ is given by $\lim _{z \rightarrow-5}(z+5) \frac{z^{n}}{(z+2)(z+5)}=\frac{(-5)^{n}}{-3}$
$\therefore u_{n}=$ sum of residues $=\frac{(-2)^{n}}{3}+\frac{(-5)^{n}}{-3}=\frac{1}{3}\left\{(-2)^{n}-(-5)^{n}\right\}$
Example 22 Find the inverse z-transform of $\frac{z^{2}+z}{(z-1)\left(z^{2}+1\right)}$
Solution: $\quad U(z)=\frac{z^{2}+z}{(z-1)\left(z^{2}+1\right)}$
Now $u_{n}=\frac{1}{2 \pi i} \oint_{c} U(z) z^{n-1} d z$

$$
\begin{aligned}
\Rightarrow u_{n} & =\frac{1}{2 \pi i} \oint_{c} \frac{z^{2}+z}{(z-1)\left(z^{2}+1\right)} z^{n-1} d z \\
& =\frac{1}{2 \pi i} \oint_{c} \frac{z^{n}(z+1)}{(z-1)(z+i)(z-i)} d z
\end{aligned}
$$

There are three simple poles at $z=1, \quad z=-i$ and $z=i$
Residue at $z=1$ is given by $\lim _{z \rightarrow 1}(z-1) \frac{z^{n}(z+1)}{(z-1)(z+i)(z-i)}=1$
Residue at $z=-i$ is given by $\lim _{z \rightarrow-i}(z+i) \frac{z^{n}(z+1)}{(z-1)(z+i)(z-i)}=-\frac{1}{2}(-i)^{n}$
Residue at $z=i$ is given by $\lim _{z \rightarrow i}(z-i) \frac{z^{n}(z+1)}{(z-1)(z+i)(z-i)}=-\frac{1}{2} i^{n}$
$\therefore u_{n}=$ sum of residues $=1-\frac{1}{2}(-i)^{n}-\frac{1}{2} i^{n}=1-\frac{1}{2}\left\{(-i)^{n}+i^{n}\right\}$

Example23 Find the inverse z-transform of $\frac{z(z+1)}{(z-1)^{3}}$
Solution: $\quad U(z)=\frac{z(z+1)}{(z-1)^{3}}$

$$
\begin{aligned}
\text { Now } u_{n} & =\frac{1}{2 \pi i} \oint_{c} U(z) z^{n-1} d z \\
\Rightarrow u_{n} & =\frac{1}{2 \pi i} \oint_{C} \frac{z^{n}(z+1)}{(z-1)^{3}} d z
\end{aligned}
$$

Here $z=1$ is a pole of order 3

$$
\begin{aligned}
& \text { Residue at } z=1 \text { is given by } \frac{1}{2!} \lim _{z \rightarrow 1} \frac{d^{2}}{d z^{2}}\left[\frac{(z-1)^{3} z^{n}(z+1)}{(z-1)^{3}}\right] \\
& =\frac{1}{2!} \lim _{z \rightarrow 1} \frac{d^{2}}{d z^{2}}\left[z^{n}(z+1)\right] \\
& =\frac{1}{2!} \lim _{z \rightarrow 1} \frac{d}{d z}\left[(n+1) z^{n}+n z^{n-1}\right] \\
& =\frac{1}{2!} \lim _{z \rightarrow 1}\left[(n+1) n z^{n-1}+n(n-1) z^{n-2}\right] \\
& =\left[n^{2}+n+n^{2}-n\right]=n^{2} \\
& \therefore u_{n}=\text { Sum of residues }=n^{2}
\end{aligned}
$$

4.3.5 Power series method

In this method, we find the inverse Z - transform by expanding $U(z)$ in power series.
Example 24 Find u_{n} if $U(z)=\log \frac{z}{z+1}$
Solution: Given $U(z)=\log \frac{z}{z+1}=\log \left(\frac{z+1}{z}\right)^{-1}=-\log \frac{z+1}{z}=-\log \left(1+\frac{1}{z}\right)$

$$
\begin{aligned}
& \therefore U(z)=-\log (1+y) \quad \text { Putting } \frac{1}{z}=y \\
&=-y+\frac{y^{2}}{2}-\frac{y^{3}}{3}+\frac{y^{4}}{4}-\cdots \\
& \because \log (1+x)=x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\cdots \\
& \Rightarrow U(z)=-\frac{1}{z}+\frac{1}{2 z^{2}}-\frac{1}{3 z^{3}}+\frac{1}{4 z^{4}}-\cdots \quad \because y=\frac{1}{z} \\
& \Rightarrow U(z)=0+\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n} z^{-n}
\end{aligned}
$$

Comparing with $U(z)=\sum_{n=0}^{\infty} u_{n} z^{-n}$, we get

$$
u_{n}=\left\{\begin{array}{c}
0 \text { for } n=0 \\
\frac{(-1)^{n}}{n}, \text { otherwise }
\end{array}\right.
$$

4.3.6 Convolution theorem method

Convolution theorem for Z-transforms states that:
If $U(z)=Z\left\{u_{n}\right\}$ and $V(z)=Z\left\{v_{n}\right\}$, then $Z\left\{u_{n} * v_{n}\right\}=U(z) \cdot V(z)$

$$
\Rightarrow Z^{-1}[U(z) \cdot V(z)]=u_{n} * v_{n}
$$

Example 25 Find the inverse z-transform of $\frac{z^{2}}{(z-1)(2 z-1)}$ using convolution theorem.
Solution: Let $U(z)=Z\left\{u_{n}\right\}=\frac{z}{(z-1)}$ and $V(z)=Z\left\{v_{n}\right\}=\frac{z}{(2 z-1)}=\frac{1}{2}\left(\frac{z}{z-\frac{1}{2}}\right)$
Clearly $u_{n}=(1)^{n}$ and $u_{n}=\frac{1}{2}\left(\frac{1}{2}\right)^{n} \quad \because Z^{-1}\left[\frac{z}{z-a}\right]=a^{n}$
Now by convolution theorem $Z^{-1}[U(z) . V(z)]=u_{n} * v_{n}$
$\Rightarrow Z^{-1}\left[\frac{z^{2}}{(z-1)(2 z-1)}\right]=(1)^{n} *\left(\frac{1}{2}\right)^{n+1}$
We know that $u_{n} * v_{n}=\sum_{m=0}^{n} u_{m} v_{n-m}$

$$
\begin{aligned}
& =\sum_{m=0}^{n}(1)^{m}\left(\frac{1}{2}\right)^{n+1-m} \\
& =\left(\frac{1}{2}\right)^{n+1}+\left(\frac{1}{2}\right)^{n}+\left(\frac{1}{2}\right)^{n-1}+\cdots+\frac{1}{2} \\
& =\frac{1}{2}\left[1+\frac{1}{2}+\left(\frac{1}{2}\right)^{2}+\cdots+\left(\frac{1}{2}\right)^{n}\right] \\
& =\frac{1}{2}\left[\frac{1}{1-\frac{1}{2}}\left(1-\left(\frac{1}{2}\right)^{n+1}\right)\right] \\
& \because S_{n}=\frac{a}{1-r}\left(1-r^{n}\right) \\
& =\frac{1}{2}\left[2\left(1-\left(\frac{1}{2}\right)^{n+1}\right)\right] \\
& =1-\left(\frac{1}{2}\right)^{n+1}
\end{aligned}
$$

Exercise 4A

1. Find the Z-transform of $u_{n}=\left\{\begin{array}{c}2^{n}, n<0 \\ 3^{n}, \\ 1 \geq 0\end{array}\right.$
2. Find the Z-transform of $u_{n}=\frac{1}{(n-p)!}$
3. Find the inverse Z-transform of $u_{n}=\frac{2 z}{(z-1)\left(z^{2}+1\right)}$
4. Solve the difference equation $y_{x+2}+4 y_{x+1}+3 y_{x}=3^{x}, y_{0}=0, y_{1}=1$ using Z-transforms

Answers

1. $\frac{2 z}{z^{2}-8 z+15}, \quad 3<|z|<5$
2. $z^{-p} e^{\frac{1}{z}}$
3. $1-\cos \frac{n \pi}{2}-i \sin \frac{n \pi}{2}$
4. $y_{x}=\frac{1}{24} 3^{x}-\frac{5}{12}(-3)^{x}+\frac{3}{8}(-1)^{x}$
