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Chapter 1

Probability Distributions

Probability distributions are of two types viz. discrete probability distributions

and continuous probability distributions. Binomial and Poission distributions are

discrete distributions whereas Normal distribution is a continuous probability dis-

tribution.

1.1 Binomial Distribution

Let there be n independent finite trials in an experiment such that

• each trial has only two possible outcomes success and failure

• probability of success(p) and probability of failure(q) are constant for all the

trials and p + q = 1

If a random variable X denotes the number of successes in n trials then

P (X = r) = nCr pr qn−r

or P (r) = nCr qn−r pr

∴ Distribution may be given as (q + p)n

1.1.1 Mean of a Binomial Distribution

Mean =
n∑

r=0

r P (r)

= nC1 qn−1 p + 2 nC2 qn−2 p2 + 3 nC3 qn−3 p3 + · · ·+ npn

= nqn−1 p + 2n(n−1)
2!

qn−2 p2 + 3n(n−1)(n−2)
3!

qn−3 p3 + · · ·+ npn

= np
[
qn−1 + (n− 1)qn−2 p + (n−1)(n−2)

2!
qn−3 p2 + · · ·+ pn−1

]
= np [qn−1 + n−1C1 qn−2 p + n−1C2 qn−3 p2 + · · ·+ pn−1]
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= np(q + p)n−1

= np as (q + p) = 1

1.1.2 Variance of a Binomial Distribution

Variance =
n∑

r=0

r2P (r)− (mean)2

Now
n∑

r=0

r2 P (r) = 12 nC1 qn−1 p + 22 nC2 qn−2 p2 + 32 nC3 qn−3 p3 + · · ·+ n2pn

= nqn−1 p + 4 n(n−1)
2!

qn−2 p2 + 9n(n−1)(n−2)
3!

qn−3 p3 + · · ·+ n2pn

= np
[
qn−1 + 2(n− 1)qn−2 p + 3(n−1)(n−2)

2!
qn−3 p2 + · · ·+ npn−1

]
= np

[
qn−1 + (n− 1)qn−2 p + (n−1)(n−2)

2!
qn−3 p2 + · · ·+ pn−1

]
+ np [(n− 1)qn−2 p + (n− 1)(n− 2)qn−3 p2 + · · ·+ (n− 1)pn−1]

= np {[(q + p)n−1] + (n− 1)p [qn−2 + (n− 2)qn−3 p + · · ·+ pn−2]}

= np {[(q + p)n−1] + (n− 1)p [(q + p)n−2]}

= np {1 + (n− 1)p}

∴ V ariance = np {1 + (n− 1)p} − n2p2

= np {1− p}

= npq

∴ for Binomial Distribution

• Mean = np

• µ1 = 0

• µ2 = σ2 = npq

• µ3 = npq(q − p)

• µ4 = npq [1 + 3pq(n− 2)]

• β1 =
µ2

3

µ3
2

= (q−p)2

npq
, γ1 = (q−p)√

npq

• β2 = µ4

µ2
2

= 3 + 1−6pq
npq

, γ2 = 1−6pq
npq

Note:

1. Binomial Distribution is symmetrical if β1 = 0 i.e. if (q−p)2

npq
= 0 or q = p = 1

2

2. Binomial Distribution is positively skewed if γ1 > 0 i.e. q−p > 0 or 1−2p > 0

or p < 1
2
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3. Binomial Distribution is negatively skewed if p > 1
2

4. Since 0 < q < 1 ∴ for Binomial Distribution npq < np i.e. Mean < Variance

Example 1. To prove Variance of a Binomial Distribution ≤ n
4

Solution: Variance = σ2 = npq = np(1− p)

= n(p− p2) = f(p) say

For f(p) to be maximum

f́(p) = 0 and f́ (́p) < 0

Now f(p) = n(p− p2)

f́(p) = n(1− 2p) = 0 ⇒ p = 1
2

f́ (́p) = n(0− 2) = −2n < 0

∴ f(p) is maximum at p = 1
2

∴ Maximum variance is at p = 1
2
, q = 1

2

i.e. Maximum Variance = n.1
2
.1
2

= n
4

∴ Variance ≤ 4

Example 2. 6 dice are thrown 729 times. How many times would you expect

at least 3 dice to show 1 or 2 ?

Solution: Here the Binomial Distribution is given by:

N(q + p)n, where n = 6, p = 2
6

= 1
3
, q = 2

3
, N = 729

∴ B.D. is given by 729(2
3

+ 1
3
)6

Now P (X ≥ 3) = 729
[

6C3(
2
3
)3(1

3
)3 + 6C4(

2
3
)2(1

3
)4 + 6C5(

2
3
)(1

3
)5 + 6C6(

1
3
)6

]
= 729

36 [160 + 60 + 12 + 1]

= 233

Example 3. If the sum of mean and variance of Binomial Distribution is 4.8

for 5 trials. Find the distribution.

Solution: Given np + npq = 4.8, n = 5

⇒ np(1 + q) = 4.8

⇒ 5(1− q)(1 + q) = 4.8

⇒ 1− q2 = 0.96

⇒ q2 = 1− 96
100

⇒ q2 = 1
25
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⇒ q = 1
5

∴ p = 4
5

and the distribution is (1
5

+ 4
5
)5

1.1.3 Moments of Binomial Distribution using Moment

Generating Function (MGF)

The MGF about origin is expected value of etr

Mo(t) = E(etr)

=
∑

p(r)etr

=
∑n Crp

rqn−retr

=
∑n Cr(pe

t)rqn−r

= (q + pet)n

Now
[

d
dt

Mo(t)
]
t=0

= [n(q + pet)n−1pet]t=0

= n(q + p)n−1p = np

⇒ µ́1 = np

Now Ma(t) = e−atMo(t)

⇒ Mm(t) = e−npt(q + pet)n), as mean = m = np

= (qe−pt + peqt)n

=
[
(q + p) + (−qpt + pqt) + (q p2t2

2!
+ p q2t2

2!
) + (−q p3t3

3!
+ p q3t3

3!
) + (q p4t4

4!
+ p q4t4

4!
) + · · · · · ·

]n

=
[
1 + pq t2

2!
+ pq(q2 − p2) t3

3!
+ pq(q3 + p3) t4

4!
+ · · · · · ·

]n

= 1 + npq t2

2!
+ npq(q − p) t3

3!
+ npq(q3 + p3) t4

4!
+ · · ·+ n(n−1)

2!
p2q2 t4

4
+ · · · · · ·

or 1 + µ1t + µ2
t2

2!
+ µ3

t3

3!
+ µ4

t4

4!
+ · · · · · ·

= 1 + npq t2

2!
+ npq(q − p) t3

3!
+ npq(1 + 3pq(n− 2)) t4

4!
+ · · · · · ·

Equating the coefficients of like powers of t on both sides

µ2 = npq, µ3 = npq(q − p), µ4 = npq [1 + 3pq(n− 2)]

1.2 Poisson Distribution

Poisson Distribution is a limiting case of Binomial Distribution when

1. n →∞

2. p → 0

3. np = λ is finite.
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Under these conditions, Binomial Distribution is extended to Poisson Distribution

with P (r) = e−λλr

r!

Proof: In Binomial Distribution

P (r) = nCr qn−r pr

= nCr (1− p)n−r pr

= nCr (1− λ
n
)n−r (λ

n
)r ∵ np = λ

= n(n−1)(n−2)···(n−(r−1))
r!

(1− λ
n
)n−r (λ

n
)r

=
1(1− 1

n
)(1− 2

n
)···(1− (r−1)

n
)

(1−λ
n

)r r!
(1− λ

n
)n λr

Taking limits as n →∞

P (r) = λr

r!
limn→∞(1− λ

n
)n

P (r) = λr

r!
limn→∞

[
(1− λ

n
)
−n
λ

]−λ

⇒ P (r) = e−λλr

r!
∵ limx→∞(1 + 1

x
)x = e

1.2.1 Mean of a Poisson Distribution

Mean =
∞∑

r=0

r P (r) as n →∞

=
∞∑

r=0

r e−λλr

r!

= e−λλ1

1!
+ 2 e−λλ2

2!
+ 3 e−λλ3

3!
+ · · · · · ·

= e−λλ
(
1 + λ + λ2

2!
+ · · · · · ·

)
= e−λ λ eλ

= λ

1.2.2 Variance of a Poisson Distribution

Variance =
∞∑

r=0

r2 P (r)− (mean)2

Now
n∑

r=0

r2 P (r) = 12 e−λλ1

1!
+ 22 e−λλ2

2!
+ 32 e−λλ3

3!
+ 42 e−λλ4

4!
+ · · · · · ·

= e−λλ
(
1 + 2λ + 3λ2

2!
+ 4λ3

3!
+ · · · · · ·

)
= e−λλ

[(
1 + λ + λ2

2!
+ λ3

3!
+ · · ·

)
+

(
λ + λ2 + 3λ2

3!
+ · · ·

)]
= e−λλ

[
eλ + λ

(
1 + λ + λ2

2!
+ · · · ·

)]
= e−λλ

[
eλ + λeλ

]
⇒

n∑
r=0

r2 P (r) = e−λ λ eλ (1 + λ)

= λ + λ2

6



⇒ Variance = λ + λ2 − λ2

= λ

1.2.3 Moments of a Poisson Distribution

Since Poisson Distribution is a limiting case of Binomial Distribution, therefore

mean and moments may be obtained from Binomial Distribution by taking np = λ,

p → 0 and q → 1 as limn→∞.

• Mean = limn→∞ np = λ

• µ2 = limn→∞ npq = λ

• µ3 = limn→∞ npq(q − p) = λ.1(1− 0) = λ

• µ4 = limn→∞ npq [1 + 3pq(n− 2)]

= limn→∞ npq [1 + 3npq − 6pq]

= λ.1 [1 + 3λ.1− 6.0.1]

= λ + 3λ2

• β1 = 1
λ

• β2 = 3 + 1
λ

Example 1. If the standard deviation of a poisson variate X is
√

3, then

find the probability that X is strictly positive.

Solution: Variance = λ = 3

∴ P (X = r) = e−λλr

r!

= e−33r

r!
, r = 0, 1, 2, 3, · · ·

The probability that X is strictly positive is :

P (X > 0) = 1− P (X = 0)

= 1− e−3

Example 2. In a certain factory producing tyres, there is a small chance of

1 in 500 tyres to be defective. The tyres are supplied in lots of 10. Using poisson

distribution, calculate the approximate number of lots containing

(1) no defective

(2) at least one defective
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tyres in a consignment of 10, 000 lots.

Solution: p = 1
500

, n = 10, λ = np = 1
50

= 0.02

P (X = r) = e−λλr

r!

(1) Probability of no defective tyre in a lot is given by:

P (X = 0) = e−0.02(0.02)0

0!

= e−0.02

= 0.9802

∴ Number of lots containing no defective tyres = 10, 000× 0.9802 = 9802 lots

(2) Probability of at least one defective tyres in a lot is given by:

P (X ≥ 1) = 1− P (X = 0)

= 1− 0.9802 = 0.0198

∴ Number of lots containing at least one defective tyre = 10, 000× 0.0198 = 198

lots

Example 3. A skilled typist kept a record of his mistakes made per day

during 300 working days.

Mistakes (per day) 0 1 2 3 4 5 6

No. of days 143 90 42 12 9 3 1

Solution: Mean number of mistakes =
∑

fi xi∑
fi

= 1
300

[(143× 0) + (90× 1) + (42× 2) + (12× 3) + (9× 4) + (5× 3) + (6× 1)]

= 267
300

= 0.89 = λ

Mistakes (per day) P (r) = e−0.89(0.89)r

r!
Theretical frequency

0 P (0) = e−0.89(0.89)0

0!
= 0.411 0.411× 300 = 123.3 = 123(say)

1 P (1) = e−0.89(0.89)1

1!
= 0.365 0.365× 300 = 109.5 = 110(say)

2 P (2) = e−0.89(0.89)2

2!
= 0.0.163 0.163× 300 = 48.9 = 49(say)

3 P (3) = e−0.89(0.89)3

3!
= 0.048 0.048× 300 = 14.4 = 14(say)

4 P (4) = e−0.89(0.89)4

4!
= 0.011 0.011× 300 = 3.3 = 3(say)

5 P (5) = e−0.89(0.89)5

5!
= 0.002 0.002× 300 = 0.6 = 1(say)

6 P (6) = e−0.89(0.89)6

6!
= 0.0003 0.0003× 300 = 0.09 = 0(say)
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1.3 Normal Distribution

The probability curve of a normal variate x with mean µ and standard deviation

σ is given by

p(x) = 1
σ
√

2π
e−

1
2(

x−µ
σ )

2

, −∞ < x < ∞
Figure 1.1 shows normal distribution curve for variable x with mean µ and stan-

dard deviation σ.

Figure 1.1: Normal Distribution Curve

Any normal variable x with mean µ and standard deviation σ is changed to

standard normal variate z with mean 0 and standard deviation 1, using the relation

z =
(

x−µ
σ

)
and hence the probability density function of z is given by

φ(z) = 1√
2π

e−
z2

2 , −∞ < z < ∞

Figure 1.2 gives normal distribution curve for standard normal variate z.

Figure 1.2: Standard Normal Curve
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Area under the curve between the ordinates a < z < b gives the probability

of variate z taking the values between a and b.

Note:
• The graph of p(x) or φ(z) is a bell shaped curve.

• Since the distribution is symmetrical, mean, mode and median coincide at

x = µ or z = 0. Also β1 = 0 ⇒ γ1 = 0 and β2 = 3 ⇒ γ2 = 0

• The ordinate at x = µ or z = 0, divides the whole area into two equal parts.

Also since the total area under the probability curve is 1, area to the right

of the ordinate as well as to the left of the ordinate x = µ or z = 0 is 0.5.

• Since the distribution is symmetrical, all moments of odd order about mean

are zero

i.e. µ2n+1 = 0, n = 0, 1, 2, 3, · · · · · ·

• The moments of even order are given by :

µ2n = 1.3.5 · · · · · · (2n− 1)σ2n, n = 0, 1, 2, 3, · · · · · ·

Putting n = 1 and 2, µ2 = σ2, µ4 = 3σ4, β1 = µ3
2

µ2
3 = 0, β2 = µ4

µ2
2 = 3σ4

σ4 = 3

Example 1. The daily wages of 1000 workers are normally distributed with

mean Rs.100 and with a standard deviation of Rs.5. Estimate the number of

workers whose daily wages will be:

1. between Rs.100 and Rs.105

2. between Rs.96 and Rs.105

3. more than Rs.110

4. less than Rs.92

5. Also estimate the daily wages of 100 highest paid workers.

Solution: Let the random variable X denote the daily wages in rupees. Then X

is a random variable with mean µ = 100 and S.D. σ = 5.

Z = X−µ
σ

= X−100
5

(1) P (100 < X < 105)

= P (100−100
5

< Z < 105−100
5

)

= P (0 < Z < 1) = 0.3413 using normal

distribution table 1.3, given in the end.
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(2) P (96 < X < 105)

= P (96−100
5

< Z < 105−100
5

)

= P (−0.8 < Z < 1)

= P (0 < Z < 0.8) + P (0 < Z < 1)

= 0.2881 + 0.3413 = 0.6294

(3) P (X > 110)

= P (Z > 110−100
5

)

= P (Z > 2) = 0.5− P (0 < Z < 2)

= 0.5− 0.4772 = 0.0228

(4) P (X < 92)

= P (Z < 92−100
5

)

= P (Z < −1.6) = P (Z > 1.6)

= 0.5− P (0 < Z < 1.6)

= 0.5− 0.4452 = 0.0548

(5) Proportion of 100 highest paid workers is 100
1000

= 1
10

= 0.1

To determine X = r such that P (X > r) = 0.1

When X = r, Z = r−100
5

= Z1 (say)

∴ P (Z > Z1) = 0.1

⇒ P (0 < Z < Z1) = 0.5− 0.1 = 0.4

From Normal Distribution table 1.3, Z1 = 1.28 approx.

∴ Z1 = r−100
5

= 1.28

⇒ r = 100 + 5× 1.28 = 106.4

Hence the lowest daily wages of 100 highest paid workers are Rs.106.4.

1.3.1 Moments of Normal Distribution

• Odd order moments about mean of normal distribution are zero

rth moment about mean x̄ is given by µr =
∞∫
−∞

fi(x−x̄)r

n
dx

∴ odd order moments of normal distribution with mean µ are given by
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µ2n+1 =
∞∫
−∞

(x− µ)2n+1 p(x)dx ∵ p(x) = fi

n

= 1
σ
√

2π

∞∫
−∞

(x− µ)2n+1e−
1
2(

x−µ
σ )

2

dx ∵ p(x) = 1
σ
√

2π
e−

1
2(

x−µ
σ )

2

= 1√
2π

∞∫
−∞

(σz)2n+1e
−z2

2 dz By putting z = x−µ
σ

, dx = σdz

= σ2n+1
√

2π

∞∫
−∞

z2n+1e
−z2

2 dz

= 0 z2n+1e
−z2

2 being an odd function of z

• Even order moments about mean are given by:

µ2n = 1.3.5 · · · · · · (2n− 1)σ2n, n = 0, 1, 2, 3, · · ·

Proof: µ2n =
∞∫
−∞

(x− µ)2n p(x)dx

= σ2n
√

2π

∞∫
−∞

z2ne
−z2

2 dz

= 2σ2n
√

2π

∞∫
0

z2ne
−z2

2 dz Being even function of z

= 2σ2n
√

2π

∞∫
0

(2t)ne−t(2t)−
1
2 dt Putting z2

2
= t ⇒ zdz = dt

⇒ µ2n = 2nσ2n
√

π

∫∞
0

e−ttn−
1
2 dt

= 2nσ2n
√

π
Γ

(
n + 1

2

)
∵ Γ (n) =

∞∫
0

e−xxn−1dx

Again changing n to n− 1

µ2n−2 = 2n−1σ2n−2
√

π
Γ

(
n− 1

2

)
⇒ µ2n

µ2n
= 2σ2 Γ(n+ 1

2)
Γ(n− 1

2)
= 2σ2 (n− 1

2)Γ(n− 1
2)

Γ(n− 1
2)

= 2σ2
(
n− 1

2

)
⇒ µ2n = σ2 (2n− 1) µ2n−2

= [σ2 (2n− 1)] [σ2 (2n− 3)] µ2n−4

= [σ2 (2n− 1)] [σ2 (2n− 3)] [σ2 (2n− 5)] µ2n−6

...

= [σ2 (2n− 1)] [σ2 (2n− 3)] [σ2 (2n− 5)] · · · [σ23] [σ21] µ0

⇒ µ2n = 1.3.5 · · · (2n− 5) (2n− 3) (2n− 1) σ2n
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Figure 1.3: Standard Normal Table

13


