Ordinary Differential Equations

2.1 Introduction: Relationship between variables and their rate of changes gives rise to differential
equations. Mathematical formulation of most of the physical and engineering problems leads to
differential equations. It is very important for scientists and engineers to know the inception and
solving of differential equations. These are of two types:

1) Ordinary Differential Equations (ODE)
2) Partial Differential Equations (PDE)

An Ordinary Differential Equation (ODE) involves the derivatives of a dependent variable with
respect to a single independent variable whereas a partial differential equation (PDE) contains the
derivatives of a dependent variable with respect to two or more independent variables. In this chapter
we will confine our studies to ordinary differential equations.

Important Results

> Integration by parts when first function vanishes after a finite number of differentiations: If u
and v are both differentiable functions of x, such that u vanishes finitely, then

Juvdx = uv; —uMv, + uPv; —u®v, + -
Here u™is derivative of u™=V and v,, is integral of v,,_4

For example
J x%.sinnx dx = (x?) (_ Coinx) — (2%) (_ sinnx) +(2) (cosnx)

n2 n3

= —x%cosx +2xsinx+ 2cosx

xzcosnx_l_ 2xsinnx+ 2cosnx

n n?2 n3
> (+x0)t=1—x+x2—x3+--
> (1—x)t=1+x+x?>+x3+-
2.2 Order and Degree of Ordinary Differential Equations (ODE)

A general ordinary differential equation of nf"order can be represented in the form
2
F( ) ,ﬂ,d_y ) ___,ﬂ
dx’ dx? dxm
derivative occurring in it and the degree is the power of highest derivative after it has been freed from
all radical signs.

)= 0. Order of an ordinary differential equation is that of the highest

2 3 3
The differential equation(%+ Zy) + %+y = 0 is having order 3 and degree 1, whereas

(dg_y+ 2 )3 + dz—y+ = 0 is of order 3 and degree 3
dx3 y dx? y .

2~ 3
The differential equation \/ZZTZ = % + y is having order 3 and degree 2.
2.3 Geometric Meaning of First and Second Order Differential Equations

The order of a differential equation depends upon the number of arbitrary constants present in the
original equation. For instance, the equation y = mx has only one arbitrary constant, therefore the
corresponding differential equation will be of first order; while the equation y = mx + ¢ has two
arbitrary constants, hence it will lead to a second order differential equation. Now since for any first
order differential equation, m can take infinite values, hence the locus of the equation is made up of
single infinity of curves. Also, for a second order differential equation, m can take infinite values and



c can take infinite values at the same time, therefore the general solution can be said to have double
infinity of curves. Hence, we can conclude that any nt" order differential equation has n'"* infinity of
curves as its general solution.

2.4 Approximate Solutions of Differential Equations: In some cases, where analytical methods are
tedious to apply, we can find approximate solutions of first order differential equations using graphical
or numerical methods.

2.4.1 Approximating the Curve Using Directional Fields or Slope Fields
With the help of direction fields (slope fields), we can approximate the general solution of a first-
order differential equation of the type Z—i = f(x,y) by drawing isoclines (lines having same slopes).

Here we use the fact that Z—z at any given point (x, y) on the curve gives the slope of the tangent (or

gradient) to the curve at (x, y).
Algorithm to plot the curve using slope fields:

Stepl: Arrange the given first order differential equation in the form Z_i: = f(x,y), Where Z—i’ =m

is the slope if the tangent to the curve at any point (x, y) on the curve.

Step2: Draw the isoclines corresponding to different values of m like —1, —2, 0, 1, 2 etc. Here the
isoclines corresponding to m = 0, known as null clines (the tangents parallel to x-axis), provide the
positioning of the curve about the x-axis.

Step3: Plot the family of the curves by estimating the direction with the help of isoclines plotted on
the direction field.

Examplel Find the family of curves for the equation Z—Z = x using slope fields.

m=2 m=-1 m=0 m=1 m=2
X =m=tanb

Solution: Let ay
dx

The isoclines corresponding to different values of m
are as computed as given below:
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Here 6 is the angle made by the tangent to the curve at the point (x,y) with  positive
direction of x-axis. The table shows that the null clines
are placed about the line x = 0, i.e. y-axis. Also slopes
of all the tangents to the family of curves about the line
x = 1 are one, i.e. tangents to the curves make an angle
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similar interpretations for remaining values of m in the
table.

It is evident that infinite number of curves can be drawn

in the given direction field. Figure 1 and Figure 2 show
the two curves in the family of curves. Figure 2
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Note: Analytic solution of the given differential equation using variable separable method may be
2

computedasy = x? + c. Clearly Figurel shows a particular solution for ¢ = 0 and Figure2 shows the

solution corresponding to ¢ = 1.

Example2 Find the family of curves for the equation Z—z = y using slope fields.

Solution: LetZ—z =y=m=tanf

The isoclines corresponding to different values of R R ) N
m are as computed as given below: 2 Ffee -
m=tanf 0 y e P
—2  [11657° | -2 - ( 1
-1 135° | -1 A N N ) B B

0 00 0 m=-1~ N N - NN N

1 4590 1 m=-2\ \ \ AR SR

2 63.43° | 2 R R (R SR S
Here 6 is the angle made by the tangent to the curve Figure 3
at the point (x, y) with positive direction of x-axis. The feeepooend g
table shows that the null clines are placed about the line
y = 0, i.e. x-axis. Also slopes of all the tangentstothe m=2 / / /= / / /
family of curves about the line y =1 are one, ie. ., ., , , + , ,
tangents to the curves make an angle =, when the curve

. 4 .. m=0 -3 FE ey 1 2
passes through the line y=1,and similar
interpretations for remaining values of m in the table. It mELNN A N
is evident that infinite number of curves can be drawn m=2\ \ \ = \ \
in the given direction field. Figures 3 and 4 show the R R W SR W W
two curves in the family of curves.
Figure 4

Note: Analytic solution of the given differential equation using variable separable
method may be computed as y = ce*. Clearly Figure 3 depicts a particular solution for a positive
value of arbitrary constant ¢ and Figure 4 shows a solution corresponding to a negative value of c.

2.4.2 Numerical Methods to Find an Approximate solution

The first-order differential equation and a given initial value constitute a first-order initial value

problem given as: Z—y f(x,v);v(xy) = yo. An approximate solution can be found using numerical

X

methods; Euler’s method is one of them.

2.4.2.1 Euler’s Method

Euler’s Method provides us with a numerical solution of the initial value problem

Z—i’ = f(x,y); y(xo) =y, - (D), by joining multiple small line segments A,4, , A;4,, A,Asz,,

and making an approximation of the actual curve, as shown in the adjoining figure.

Thus if [x,, x,] is the small interval, where x, = x, + h, we approximate the curve by the tangent
drawn to curve at the point 4,, having coordinates (x,,y,), whose equation is given by y — y, =
m(x — x,), Where m is slope of tangent at the point (x,, y,)



Alsom = d—y] = f(xq,y,) from (D) y

4% (x0,0)
= ¥ =Yo+ f(x0,¥0) (x = xo)
= y1=Yo + (X0, ¥0) (¥1 — %) = y(x1) =
= ¥Y1 = Yo + hf (X0, Y0) v X1 —Xo=h ¢
Similarly for range [x;,x,] '
Y2 = Y1+ hf(x, 1) 4 A

¢ 4

Yn = Yn-1+ hf (Xn_1,Yn-1)
It is evident from the given figure that h hastobe ¢

kept small to avoid the approximations diverging away from the curve. As a result, this method is
very slow and needs to be improved.

Example3 Using Euler’s method, Compute y(0.12) for the initial value problem:
%=x3+y; y(0) = 1, taking h = 0.02 .
Solution: Given f(x,y) =x3>+y,x,=0, yo=1, x, =x,_; + h, h =0.02
~x; =002, x, =004, x3 =006, x, =0.08 , x; =0.1
Using Euler’s method y,, = y,—1 + hf (X—1, Yn—1)
= Yn =Yt + R0+ Yuy) @
Putting n = 1in (D), y; = y(0.02) =y, + h (x> + v,)
v y; =140.02(0+ 1) = 1.02
Putting n =2 in (D, y, = y(0.04) =y, + h (x,® + y,)
vy, = 1.02 + 0.02((0.02)3 + 1.02) = 1.04040016
Putting n =3 in (D), y; =y(0.06) =y, + h (x,% +y,)
+ y; = 1.04040016 + 0.02( (0.04)* + 1.04040016) = 1.061209443
Putting n = 4in (D), y, = y(0.08) = y; + h (x3° + v5)
vy, = 1.061209443 + 0.02( (0.06)3 + 1.061209443) = 1.082437952
Putting n =5in (1), ys = y(0.1) =y, + h (x,% + y,)
+ ys = 1.082437952 + 0.02( (0.08) + 1.082437952) = 1.104096951
Putting n = 6in (1), y, =y(0.12) = ys + h (x5 + y5)
. Y = 1.104096951 + 0.02( (0.1)3 + 1.104096951) = 1.126198890
Thusat x = 0.12, y = 1.126198890 = y(O.lZ) = 1.126198890

Example4 Using Euler’s method, solve Z—i = % ; y(0) = 1, over the interval [0,2],
taking the step size 0.5.
Solution: Given f(x,y) = xz;y X0=0,v,=1, x, =x,_1+h, h=05

-'-x1=%=0.5, x, =1, x3=%:1.5, Xy =2

Using Euler’s method y,, = y,_1 + hf (X5,—1, Vn—-1)

h
= Yo =Yn1t E(xn—l - yn—l)



OF Yo = Y1 +0.25(xp_1 — Yn_y) HO,
Putting n =1in (), y; = y(%) =y, + 0.25(xg — Vo)
“y,=140250-1)=0.75

Putting n=2 in(0), y, = y(1) = y; + 0.25(x; — y;)
o y, = 0.75 + 0.25(0.5 — 0.75) = 0.6875

Putting n=3in @, y; =y () =y, +0.25(x, — y2)
5 ys = 0.6875 + 0.25(1 — 0.6875) = 0.765625

Putting n =4in(D, y,=vQ) =y;+0.25(x; — y3)
o y, = 0.765625 + 0.25(1.5 — 0.765625 ) = 0.94921875

2.5 Separable Ordinary Differential Equations

Any Separable differential equation can be arranged in the form N(y) Z—i’ = M(x), and can be solved
by integrating both sides with respect to x as shown:

SN Zdx = [ MG)dx = [ NG)dy = [ MC)dx
Example5 Solve the differential equation % =X

Solution: Arranging the given differential equation in variable separable form
= dy = xdx
Integrating both sides, we have
fdy = fxdx
>y = xz_z + c is the required solution of the given differential equation.

Example6 Solve the differential equation Z—z =y
Solution: Arranging the given differential equation in variable separable form
=% = dx
y
Integrating both sides, we have

J2=[dx
y
=logy =x +logc
= log% = x >e'%% = ¢ =>% = e*
=y = ce” is the required solution of the given differential equation.
Example7 Solve the differential equation Z—i =e**Ysecy

Solution: Arranging the given differential equation in variable separable form
=>e Ycosydy =e*dx
Integrating both sides, we have
JeVcosydy = [e*dx
>eVsiny+ e Vsinydy =e* +c¢
= e Vsiny+[-eYcosy—JeVcosydyl =e* +¢



= e Ysiny—eYcosy—1=e"*+c, iffe_ycosydy = [ say
= ? (siny — cos y) = e* + c is the required solution

Example8 Solve the differential equation y — xZ—z =y2+ =i

dx

Solution: Arranging the given differential equation in variable separable form
av _ 2
= (1+x) —=y-y
- dy  dx d_y d_y _ dax
y(a-y)  (1+x) y 1=y (1+x)
Integrating both sides, we have

logly| — logl1 — y| = log|1 + x| + logc
= logli]—y =logc(1l + x)

—y =

(1-y)(1+x)

=1 +x)(1—-y)=Ay,where 4 = %is an arbitrary constant

2.6 Differential Equations Reducible to Separable Form

In some cases, a differential equation can be reduced to separable form by the substitution
f(x,y) =t and can be easily solved thereafter.

Example9 Solve the differential equation (x + y)?2 Z—i =1

dt

Solution: Puttingx+y =t =1+ @ _
dx dx

= Given differential equation can be rewritten as t2 (% — 1) =1

dt 1 1+t2
>—==4+1=
dx t2 t2

t2
sdt = dx
1+t

Integrating both sides, we have
t2
Jadt = [ax
f 1+t%2-1

——dt = [ dx

> [(1--%5)dt = fdx

1+¢2

=

> t—tanlt=x+c

>x+y—tanl(x+y)=x+c¢

=y —tan"!(x + y) = ¢, where c is an arbitrary constant
Examplel0 Solve the differential equation cos(x + y) Z—z =1

y _dt

Solution: Puttingx +y =t =1+ W
dx dx

=~ Given differential equation can be rewritten as cos t (% — 1) =1

dt 1 1+cost
=>—= +1=
dx cost cost
cost
dt = dx

1+cost



Integrating both sides, we have
f cost dt = fdx

1+cost
1+cost—-1
f 1+cost dt - fdx
1
= f (1 N 1+cost) dt = fdx

=>f(1—%sec%)dt=fdx

= t—tan§=x+c

Sx+y—tan T2 =x+c

=y — tan (x;—y) = ¢, where c is an arbitrary constant

2.7 Exact Differential Equations of First Order

A differential equation of the form M (x, y)dx + N(x,y)dy = 0 is said to be exact if it can be directly
obtained from its primitive by differentiation.

Figure 1
Theorem: The necessary and sufficient condition for the equation .
M(x,y)dx + N(x,y)dy = 0 to be exact is Z—Iy" = Z—:.

Working Rule to Solve an Exact Differential Equation:

1. For the equation M(x,y)dx + N(x,y)dy = 0, check the condition for exactness i.e., Z—Ayl =

a_N
ox
2. Solution of the given differential equation is givenby I, + I, = ¢

Where I, = [ M dx , taking y as constant
I, = [ N, dy, Here N,, denotes terms in N (x, y) which do not contain x

or fde +fNydy=C

y constant

Examplell Solve the differential equation:
(e +1)cosxdx + e¥sinxdy =0 .....(D)
Solution: M = (e¥ +1)cosx , N =¢e”sinx

oM oN

— = eYcosx, —= eYcosx

dy ox

oM _ AN . A . .

Friali i given differential equation is exact.

Solution of the differential equation (1) is given by:
J(@ +1)cosx dx + Jody=¢C

vy constant

= (e +1)sinx =C

Examplel2 Solve the differential equation:

(secxtanx tany — e* )dx + (secx sec?y)dy =0 .....(D)

Solution: M = secxtanx tany — e*, N = secx sec’y

E: secx tanx sec”y, a: secx tanx sec”y



oM _ oN : A . .
Pl given differential equation is exact.
Solution of (1) is given by:

J(secxtanx tany — e*) dx+ [0dy =C

y constant
= secxtany — e* =C
Examplel3 Solve the differential equation:

[y (1 +i) + cosy] dx + [x + logx — xsinyldy =0 .....(D)

Solution: M =y (1+§)+Cosy, N =x+logx —xsiny

oM 1 : N 1 .
- (1+;)—smy,a—(1+;)—smy
oM ON . . . . .

2 = 5% given differential equation is exact.

Solution of (1) is given by:

J

y (1+i)+cosy) dx + dey=C

y constant

=y (x+logx) +xcosy=C
Examplel4 Solve the differential equation:

_ a?(xdy - ydx)
X’dkf+')’d}7—— ———f;glzzr———..n.<:>
o T et (v = ) dy =
Solution: (1) = (x +anr)dx+ v - 77)dy =0
_ a?y oo a?x

M=x+ iyl N=y iy
oM _ a®(x*-y*) ON _ a®(x*-y?)

ay  (x%2+y2)2 ' ax  (x2+y?)?
‘;—’: = Z—: , - given differential equation is exact.

Solution of (1) is given by:
f(x+ azyz) dx + fydy=C

x2+y
y constant

2 2
= =+ a’tan '+ L=
2 y 2
=> x%+ 2a2tan‘1§+ y2=D ,D =2C

2.8 Equations Reducible to Exact Differential Equations: Sometimes a differential equation of the
form M(x, y)dx + N(x,y)dy = 0 is not exact i.e., Z—': + Z—I;’ . It can be made exact by multiplying
the equation by some function of x and y known as integrating factor (IF).

2.8.1 Integrating Factor (IF) Found by Inspection

Some non-exact differential equations can be grouped or rearranged and solved directly by
integration, after multiplying by an integrating factor (IF) which can be found just by inspection as
shown below:

Term IF Result




i xdy + ydx l l _
1. o — = ydy + - dx = d[log(xy)]
xdy + ydx 2. ;n,n;tl xdy +ydx _ d(xy) _ [ 1 ]
) wr  eor . ClaenemnT
3. cos(xy) cos(xy) (x dy + y dx) = d [sin(xy)]
sin(xy) (x dy + y dx ) = —d [cos(xy)]
4. sin(xy)
1
1. — xdy — ydx 1y
z — =l
- -y )
C 32 2 y
xdy — ydx 3. xi xdy = ydx _ d [log X]
Y Xy x
4 1
CoxZ+y? xdy — ydx
x% + y? x
1
> XY= Y% _ o [sin—r2)
xx_/x2 — y? X
1 xdx + ydy 1
et ey =g llesle + y]
xdx + ydy L xdx + ydy 1 (x2 4+ y?)—n+l
2 eyt #1 (x2+ y2)n = 2 -n+1

Examplel5 Solve the differential equation:
xdy— ydx +2x3%dx =0 ....(D

Solution: (1) = (—y + 2x3)dx + xdy = 0
M= —-y+ 2x3, N=x

oM _
dy o

oM

9 : : , I
Pl % , -~ given differential equation is not exact.

1 Wy
0x

Taking xiz as integrating factor due to presence of the term (x dy — y dx)

xdy— ydx
%2

:>d[%]+2xdx=0 ...... ©)

(1) may be rewritten as : + 2xdx =0

Integrating (2), solution is given by : %+ x2=C



>y+x3=Cx

Examplel6 Solve the differential equation:

ydx— xdy + (1 +x%)dx + x*cosydy =0 .....(D
Solution: = (y + 1+ x?)dx + (x%2cosy —x)dy =0

M=y+1+ x? N= x?cosy —x
oM N

- 1, P 2xcosy —1

oM

a . . . . .
™ * % , - given differential equation is not exact.

Taking xiz as integrating factor due to presence of the term (y dx — x dy)

ydy— xdx
52

(1) may be rewritten as : + (xiz + 1) dx + cosydy =0

:;—d[i—/]+(xiz+1)dx+cosydy=0 ...... 2

Integrating (2), solution is given by : —Z4 (—i + x) + siny =C

X
=>x?2—y—1+4+xsiny =Cx
Examplel7 Solve the differential equation:

xdx+ ydy = a(x®>+y»dy ...Q0
Solution: = xdx + (y —a(x?*+y*))dy =0

M=x, N=y—a(x?+y?
o _ 0, N _ —2ax
oy

O0x
oM , 9N ) : . .
™ # -, - given differential equation is not exact.

1
x2+ y2

Taking as integrating factor due to presence of the term (x dx + y dy)

xdx+ ydy
x2+y?

(1) may be rewritten as: ady =0

= %d[log(x2 + y)]l—ady=0

= dllogx?+ y?»)]—2ady=0...... 2

Integrating (2), solution is given by: (x> + y?) — 2ay = C, C is an arbitrary constant
Examplel8 Solve the differential equation:

alxdy + 2ydx) = xydy ....(1

Solution: (1) = 2aydx + (ax — xy)dy = 0

M= 2ay, N =ax —xy

oM _ o N _
*ax y

dy -
oM ON . . . . .
W # ——, - given differential equation is not exact.

Rewriting (D asalxdy + ydx) + aydx = xydy ...... ©)
Taking $ as integrating factor due to presence of the term (x dy + y dx)

xdy+ ydx

(2) may be rewritten as : a + % dx —dy =0



= ad[log(xy)] + % dx—dy=0...... ©)

Integrating (3) solution is given by: alog(xy) + alogx —y =C
= alog(x?y) — y = C , C is an arbitrary constant

Examplel9 Solve the differential equation:

x43—z+ x3y +sec(xy) =0 ....(»

Solution: (1) = (x3y + sec(xy))dx + x*dy = 0

M = x3y + sec(xy), N = x*
Z—I: = x3+ x sec(xy)tan(xy), Z—: = 4x
Z—A; * 2—: , - given differential equation is not exact.
Rewriting (1) as: x3(x dy + y dx) + sec(xy) dx =0
(xdy+ydx) x3dx =0
sec(xy)

= cos(xy) (xdy+ ydx) — x3dx=0
= d [sin(xy)] - %d(x‘z)dx =0 ...... 2

Integrating (2), we get the required solution as:

3

x—2
sin(xy) — — =C
= 2x2%sin(xy) — 1 = Cx?
2.8.2 Integrating Factor (IF) of a Non-Exact Homogeneous Equation
If the equation Mdx + Ndy = 0 is a homogeneous equation, then the integrating factor (IF) will be

. provided Mx + Ny # 0
Mx+Ny

Example20 Solve the differential equation:
(x® + y3dx — xy?>dy =0 .....(D
Solution: M = x3+ y3 , N = — xy?

oM _ 2 ON _ 2
ay Yoo ax y
oM _ oN . : . o
o # - given differential equation is not exact.
. . . 1 1 1
Since (1) is a homogeneous equation, - IF = prepeies e e e o
: i (1 Y_3) A
= (1) may be rewritten as : (x + 5 )de— Sdy=0.... ©)

1 y3
NewM = -+ = ,New N = — =
X X

m_ o _
ay  x* ' ax  x*
oM _
dy o
Solution of (2) is given by:

Z—Z , - (2) is an exact differential equation.

1

f(;+i’—i)dx+f0dy=€

y constant



1(y 3 _
= logx — 5(;) =C
Example21 Solve the differential equation:
By* + 3x%y¥dx + (x3y —3xy3)dy =0 .....(D)

Solution: M = 3y* + 3x?y?, N = x3y — 3xy3
oM aN

M _ 3 2 ON _ 5. 2. 2.3
% 12y° + 6x°y , o 3x“y — 3y
z;_n; * Z—’: , - given differential equation is not exact.
Since (1) is a homogeneous equation

1 1 1

T Mx+Ny  3xy*+3x3y2+4x3y2-3xy*  4x3y2

- (1) may be rewritten after multiplying by IF as:

(Z+ Dax+ (2-2)ay=0....@

4x3 4y  4x2

3y2 3 1 3
NewM = L+ = New N=——-2
4x 4x

4y 4x>
oM _ 6y _ 3y ON _ 3y
oy 4x3 2x3’ ox 2x3

oM _ 9N
dy  ox'
Solution of (2) is given by:
3y? 1) L ogy =
f(4x3+ p» dx + f4y dy =C
y constant
_3y2
8x2

- (2) is an exact differential equation.

3 1
= + Zlogx+zlogy—C

3, _ 3V _ _
= logx°y 2x2—D,D—4C
2.8.3 Integrating Factor of a Non-Exact Differential Equation of the Form

yf1(xy)dx + xf,(xy) dy = 0 : If the equation Mdx + Ndy = 0 is of the given form, then the
integrating factor (IF) will be provided Mx — Ny # 0

1
Mx—Ny
Example22 Solve the differential equation:
y(1+xy)dx+ x(1—xy)dy =0 .....(0
Solution: M = y + xy*, N =x—x?y
oM ON
- 1+ 2xy, Pl 1—2xy
aM _ oN

oy * o given differential equation is not exact.

As (1) is of the form yf, (xy)dx + xf,(xy)dy = 0,
1 1 1
IF= Mx—-Ny  xy+x2y2-xy+x2y2  2x2y2
- (1) may be rewritten after multiplying by IF as:

(1 +$)dx+(1 —i)dy= ...... ©)

2x2y 2xy? 2y

1
2x2y

New M = L !

1
+ — ,New N = —;
2x 2xy 2y



oM _ -1 oN _ -1
dy  2x2y2 ' 9x  2x2y2?
oM _ o
ay  ox '’
Solution of (2) is given by:
1 1 1
f(2x2y+ 3) dx + f— gdy—o
yCOnStant

~ (2) is an exact differential equation.

= %+% log x —élogy =C

:logi—% =D, D=2C

Example23 Solve the differential equation:

y(xy + 2x%y?)dx + x(xy —x?y*)dy =0 .....(D
Solution: M = xy? + 2x2y3, N =x%y — x3y?

oM

oM _ 2.2 ON _ 2.2
P 2xy + 6x°y*, Pl 2xy — 3x°y

oM ON

5y * o iven differential equation is not exact.

As equation (1) is of the form yf; (xy)dx + xf,(xy)dy = 0,

L IF = 1 _ 1 _ 1
B Mx—Ny x2y?242x3y3-x2y24+x3y3 3x3y3

= (1) may be rewritten after multiplying by IF as:

(L+§)dx+(xyi2—i)dy= ...... 2

x2y
1 2 1 1
NewM = —+ - ,New N =— — -
x2y  x xy y
oM _ -1 N _ -1
dy  x2y2 ' 9x  x2y2
oM _ dN

o (2) is an exact differential equation.

Solution of (2) is given by:
1 2 1
f(—+;)dx+f—;dy=€

x2y
y constant

-1
:>E+ 2 logx —logy =C
x? 1
= 10g7 _E =C
2.8.4 Integrating Factor (IF) of a Non-Exact Differential Equation
Mdx + Ndx = 0 in which ‘Z—’Z and ‘;—I: are connected in a specific way as shown:

dM ON

i If @ = f(x) , a function of x alone, then IF = ¢/ f(x)dx
9M_0ON
ii. If 2% = g(y),afunction of y alone, then IF = el ~90dy

Example24 Solve the differential equation:
(2 +y2+x)dx+ xydy =0 ....(D
Solution: M = x*+y? +x, N =xy



oM N

5= y;g= y

Z—Iyw # —, ~ given differential equation is not exact.

As @ is neither homogeneous nor of the form yf; (xy)dx + xf,(xy)dy = 0,

=~ Computing 2—'; — g—: =y

oM ON

Clearly 22* W_a = 2= ;1 = f(x) say

Xy
s |E = e F(ax — ef%dx = plogx —

= (1) may be rewritten after multiplying by IF as:

(x*+xy? +x¥)dx + x?ydy =0 ....... ©)
New M = x4+xyz+x2 , New N = x2y
oM

E—Zy, = 2xy

66—1;[ = Z—Z , @ Is an exact differential equation.
Solution of (2) is given by:
JOt+xy? +x¥dx + J0dy=C
yconstant

x2y2 x3

+>=c

5

X
> +

5

Example25 Solve the differential equation:
(y* +2y)dx + (xy® + 2y*— 4x)dy =0 .....(D
Solution: M = y* + 2y, N =xy®+ 2y* — 4x

OM _ 443 N _ 3 _
ay._ 4y +2, —= y*—4
E # —, = given differential equation is not exact.

As @ is neither homogeneous nor of the form yf; (xy)dx + xf,(xy)dy = 0,
. i OM 0N _ 5 3
=~ Computing 3y ox 3y°+6

6M oN
ay ox 3y3+6

Clearly = = ;3= g(y) say

y*+2y

3
~F = ef_g(J/)dy = ef—;dy = e~3logy — —13
y

- (1) may be rewritten after multiplying by IF as:
2 4x
(y+ ;)dx+(x+2y—;)dy= ...... 2

New M = y + % New N =x+ 2y ——

oM 4 9N 4

oy Ty
oM _ ON : : , :
= (2) is an exact differential equation.

Solution of (2) is given by:



f(y+ %) dx + [2ydy=¢C
y constant
=>(y+%)x + y2=C
Example26 Solve the differential equation:
(x? —y? 4+ 2x)dx — 2ydy =0 .....(D)
Solution: M = x? —y%+2x, N =-2y

oM ON
5 = —2y , a =0
a—M + —, - given differential equation is not exact.

As @ is neither homogeneous nor of the form yf; (xy)dx + xf,(xy)dy =0,

oM ON
~ Computing > x -2y
oM 0N
Clearly ay o Zy = 1= f(x)say

o |F = eff(x)dx = plJldx — ,px

= (1) may be rewritten after multiplying by IF as:
e*(x? —y? + 2x)dx — 2e*ydy =0....... 2
New M = e*(x? —y? 4+ 2x) ,New N = — 2e*y

M _ 5 x ON _ _ 5 x

3y 2e*y , Pl 2e*y

oM _ oN . . . .
= (2) is an exact differential equation.

Solution of (2) is given by:
Je*(x2 —y24+2x)dx + JOdy=C
y constant
= (x2—y?2+2x)e* — 2x +2)e* + (2)e* =C
= (x2 —y?)e* =C, Cisan arbitrary constant
Example27 Solve the differential equation:
2ydx + (2xlogx — xy)dy =0 .....(D
Solution: M = 2y, N =2xlogx — xy

2—1:: 2, Z—:: 2(1 +logx) —y
3 + —, - given differential equation is not exact.
As @ is neither homogeneous nor of the form yf; (xy)dx + xf,(xy)dy = 0,
=~ Computing —M— Z—IZ = —2logx+y
oM _ON
Clearly ay L xzzz ::gg;ji) = —i = f(x) say

~ |F = eff(x)dx — ef%ldx — elogx_l _ 1
x

- (1) may be rewritten after multiplying by IF as:



2?ydx + (2logx— y)dy =0 ....... ©)

New M = 2% ,New N =2logx — y

oM _2_ oN_ 2

dy T x ax  x

oM oON . . . .
5= (2) is an exact differential equation.

Solution of (2) is given by:
2y _ _y:
J (?) dx + [—ydy =C = 2ylogx . =C

y constant

2.8.5 Integrating Factor (IF) of a Non-Exact Differential Equation
x%y?(m,ydx + nyxdy) + x°y*(m,ydx + nyxdy) = 0, where a, b, c, d,

m,,ny, my,n, are constants, is given by x%yP, where a and B are connected by the relation
at+a+l _ b+ B+1 and cta+l _ d+B+1

my ng my ny
Example28 Solve the differential equation:

(y? 4+ 2x%y)dx + (2x% —xy)dy =0....(0)
Solution: M = y? + 2x%y, N = 2x3 —xy

oM _ 2 ON _ o2 _
ay—2y+2x,ax— 6x° —y
Z—A; * g—’: , - given differential equation is not exact.

Rewriting (1) as x2y°(2ydx + 2xdy) + x°y*(ydx — xdy) =0 ....... ©)
Comparing with standard forma =2, b =0, c =0, d =1,

m1:2,n1:2,m2:1,n2:_1

2+ a+1 0+ B+1 0+ a+1 1+ B+1
= and =
2 2 1 -1

2> a—pf=-2anda+p= -3

Solving we get o = ‘75 and p = =
-5 -1

~F = xo‘yﬁ = x_zy_z
- (1) may be rewritten after multiplying by IF as:

-5 -1

-5 -1
xz2yz(y? +2x%y)dx + x2y2Q2x3—xy)dy =0....... 2

1 -1 -3 1

= (x__zsy_; + Zx__zly_;) dx + (Zx_zy_z — x_zy_Z) dy =0

-5 3 -1 1 1 -1 -3 1
NewM = x2yz2+2xz2yz , New N=2xz2y 2 —x 2y 2
omMm 3 =5 1 1 =1 oN 3 =5 1 -1t
E:;xzyz-l—xzyz ’azzxzyz-kxzyz
om _ on

= —, ~ (2) is an exact differential equation.
dy ox



Solution of (2) is given by:

f(x__zsy_z + 2x__21y_;) dx + [0dy =0

y constant

3
L 3
= 4(xy)z— —;(—Z) * = C, Cis an arbitrary constant

2.9 Linear Differential Equations

dy d?y dmy
dx’dx? ' axn

A differential equation of the form F (x Y, ) = 0 in which the dependent variable y

. . . . d
and its derivatives viz. ﬁ

2
: % etc occur in first degree and are not multiplied together is called a
Linear Differential Equation.
2.9.1 First Order Linear Differential Equations (Leibnitz’s Linear Equations)

A first order linear differential equation is of the form % + Py=20Q,....... ®
where P and Q are functions of x alone or constants. To solve @), multiplying throughout by e/ ? 4

(here e/ ? 9% js known as Integrating Factor (IF)), we get

C:Z_yedex+ Pyedex=Qedex
x

=d (y edex) =0 el P dx

syelPdx=[QelPddy+C

Algorithm to solve a first order linear differential equation (Leibnitz’s Equation)
1. Write the given equation in standard form i.e., % + Py =Q

2. Find the integrating factor (IF) = e/ P d4x
3. Solution is given by y. IF = [ Q .IF dx + C, C is an arbitrary constant

Note: If the given equation is of the type Z—’; + Px = Q,

then IF = e/ P @and the solution is given by x. IF= [ Q .IFdy + C

. . . d +vsi
Example29 Solve the differential equation: =~ = Z2°2%
dx 1+cosx
Solution: The given equation may be written as:
dy sinx . x
dx 1+cosxy " l4cosx T @

This is a linear differential equation of the form % + Py=20Q

sinx X

Where P = —

1+cosx and Q -

sinx

IF = edex = ef_ 1+cosxdx = elog|1+cosx| =14 cosx

1+cosx

= Solution of (1) is given by
y. (14 cosx) = [ (1+cosx)dx+C

X

1+cosx

=>y(1+cosx)=xz—2+C
Example30 Solve the differential equation: % =1+x)+0-v)

Solution: The given equation may be written as:



This is a linear differential equation of the form % + Py=20Q
Where P=1and Q =2+ x

IE = efPdx — ofdx — px

= Solution of (1) is given by

y.e*=[(2+x)e* dx+C

>y =1+x+ Ce™*

Example31 Solve the differential equation: (x +y + 1) % =1
Solution: The given equation may be written as:

dx dx
d—y—x+y+1 = d—y—x—y+1 ...... @

This is a linear differential equation of the form Z—’; + Px =Q

Where P=—-1and Q =y +1

IF= /Py = of-dy — -V

~ Solution of (1) is given by

x.eV=[(y+De? dy+C

> xeV=—(y+2)eV+C

=>x=—-(y+2)+Ce”

Example32 Solve the differential equation: xlog x % + y=2logx

Solution: The given equation may be written as:
LA ! -2
Ix + Y == @

This is a linear differential equation of the form % + Py=Q

Where P = —— and Q =2
xlog x

X
1

IF = efPdx = ol3igx® — glogllogn) — log x
= Solution of (1) is given by
y.logx = f%logx dx +C
= ylogx = (logx)*+ C, Cisan arbitrary constant
dy _ e2Vx 1y
dx  +x
Solution: The given equation may be written as:
dy _ 1, _ et
D _Ly=to @

Example33 Solve the differential equation:

This is a linear differential equation of the form % + Py=20Q

1 e2Vx
Where P_—ﬁ and Q = =

-1
IF = efPax = oJG% = g-2v%



= Solution of (1) is given by
y. e 2Vx = erx/_

= y. e 2Vx =f\/—zdx+C

—2VX gy + C

= y. eV =2Vx+C

= y =2Vx e?V¥4(e2VX

2.8.2 Equations Reducible to Leibnitz’s Equations (Bernoulli’s Equations)

Differential equation of the form <~ + Pf(y) = Qg(¥). .......

where P and Q are functions Of x alone or constant, is called Bernoulli’s equation. Dividing both sides

of B by g(y), we get ! pL — = Q. Now putting ! (y; = t, ® reduces to Leibnitz’s equation.

)dx g

Example34 Solve the differential equation: % + == <o €

x  x2
Solution: The given equation may be written as:

—y ay 1 _ 1
y=Zz 4 = Yy — —
e s ©)
. _ _v ay dat
Y = —p TV L =
Putting e , eV == 3
. . dt 1 1
Using (3)in (2), we get ToItE TS )

(4) is a linear differential equation of the form % + Pt =0Q

1

1
Where P = —= and Q =-=

-1 -1 _ 1
IE = e/Pdx = ef 3% — p-logx — plogx™' - 2

X

= Solution of (4) is given by
t_l:f—iz.ldX"'C
X X X

St.= = —+C
x 2x2
Substituting t = e™Y
-y
= e_ - i + C
x 2x2

=2x =e¥(2cx?* + 1)
Example35 Solve the differential equation:
tany%+ tanx = cosycos3x ...... @

Solution: The given equation may be written as:

tanyd_y + tanx — COS3X
cosy dx cosy
d
= secy tanyd—3;+ secy tanx = cos3x ...... ©)
i _ dy _ a
Putting secy = t, secy tany T e 3
. . d
Using 3 in (2), we get d—i + (tanx) t = cos®x ........ @

(4) is a linear differential equation of the form % + Pt =10Q



Where P =tanx and Q = cos3x
|FE = eJPdx = pftanxdx — loglsecx| — gac y
- Solution of (4) is given by

t.secx =fcos3x. secx dx +C

= t.secx = [ cos?x dx +C

1+cos2x
dx +C

= t.secx =

sin 2x

+C
Substituting t = secy,

x
:t.secx:; +

sin 2x

=>secxsecy=x;+ +C

Example36 Solve the differential equation: d—y x+f@ ...... ©)
Solution: The given equation may be written as:

dx _ x+xy

ay oy

dx 1 x
> &Ly [f
dy y y

Dividing throughout by vx

1 dx dt
Putting Vx = t, o o ©)

. . 1
Using (3)in (2), we get d—y—;t =—
() is a linear differential equation of the form Z—; + Pt=Q

Where P = —— and Q _F
1
IF= eJPdx = efZ_;dy = e%logy = elog\/—; ==
vy
= Solution of (4) is given by

—=f—.= dx+

r fzv—rdx ¢

t% f— dx + C
= t.ﬁzzlogy+c

Substituting t = Vx

\E = log\/y+C

Example37 Solve the differential equation: x% + y= y%logx.....

Solution: The given equation may be written as:

d 2
2+ 2= Llogx
dx X X



Dividing throughout by y?
LAy 1o llogx ...... @

y2 dx xy x

. 1 dy dt
Puttlng——t —ia s w 3
Using ) in (2), we get ———t— ——logx ........ O)

() is a linear differential equation of the form E + Pt=20Q

Where P = —% and Q = —%logx

_1 _
IF = efpdx = ef_xdx = e—lng = elogx ! :l

X

= Solution of (4) is given by
t. L =f—llogx.1 dx + C
X X X
>t = =f—izlogxdx+C
X X

Putting log x = u, idx = du, also x = e*

=>t.§ =—f[ue ™ du+C

=>t.1; = —[u(—e ) —1(e™)] +C
>t.= = e u+1)+C

>ttt = —(logx+1)+ C

Substituting t = ;

1 1
> = —(ogx+ 1 +C

:1; = (logx + 1) + Cx, Cis an arbitrary constant

2.8.3 Homogeneous and Non- Homogeneous Linear Differential Equations with Constant
Coefficients
A general linear differential equation of n" order with constant coefficients is given by:

1+ + k4 x+ k,y =F(x) ... D

where k's are constant and F(x) is a function of x alone or constant.
= (ko Dn + kl Dn_1 + -4 kn—lD + kn)y - F(x)

kodn+ e, &

dxn—

dn—l

Or f(D)y = F(x), where D™ = g, pDvl= —— .. D= % are called differential operators. If

n dxn—-1"’
F(x) = 0, @ is called a homogeneous linear differential equation with Constant Coefficients.

2.8.3.1 Solving Homogeneous and Non- Homogeneous Linear Differential Equations with
Constant Coefficients

Complete solution of equation f(D)y = F(x) is given by y = C.F + P.I.

where C.F. denotes complimentary function and P.1. is the particular integral.

When F(x) = 0, it is a homogeneous linear differential equation with constant coefficients and the
solution of equation f(D)y = 0 is given by y = C.F



Rules for Finding Complimentary Function (C.F.)

Consider the equation f(D)y = F(x)

= (kg D"+ kD" 1+ -+ k,_1 D+ k,)y = F(x)

Step 1: Put D = m, auxiliary equation (A.E) is given by f(m) = 0
S kom+ kym™ 1+ + ko m+ k, =0...... 3

Step 2: Solve the auxiliary equation given by (3)

I.  If the nroots of A.E. are real and distinct say m,, m,,... m,
C.F.= c;e™* + c,e™2* 4 .. 4 ¢ ¥
Il.  If two or more roots are equal i.e., m;=m,=...=my, k <n
C.F. = (14 cx + ¢c3x% + -+ + gxbHe™¥ + ... 4 ¢ e™n*
Il If AEE. has a pair of imaginary roots i.e., m; = a+if, m, =a—1if
C.F.= e*(cqycosBx+ c,sinBx) + cze™* + -+ ce™*
IV. If 2 pairs of imaginary roots are equal i.e., m; =m, = a+if,
my=my=a—1if
C.F.= e™[(c; + cx) cosBx + (c3 + cyx) sinBx] + - + c,e™*

Example38 Solve the differential equation: % - 8% + 15y =0

Solution: = (D? — 8D +15)y =0
Auxiliary equation is: m?> —8m+15=0

> (m-3)(m-5)=0

=> m=3,5

C.F.= c,e3* + c,e>*

Since F(x) = 0, solution is given by y = C.F

>y = e+ e’

3 2
Example39 Solve the differential equation: &2 — 622 + 112 _ 6y =0
dx dx dx

Solution: = (D3 —6D%* + 11D —6)y =0
Auxiliary equationis: m® —6m? + 11lm—-6=0 ... @

By hit and trial (m — 2) is a factor of (1)

~(1) May be rewritten as

m3—2m?—4m?+ 8m+3m—-6=0
>m?*(m—2)—4m(m—2)+3(m—-2)=0
=>(m?-4m+3)(m—-2)=0
>m-3)(m-1)(m-2)=0

> m=123

C.F. = cie* + c,e?* + c;e3*

Since F(x) = 0, solution is given by y = C.F
>y = e’ + e + e’

Example40 Solve (D* — 10D3 + 35D% — 50D + 24)y =0
Solution: Auxiliary equation is:



m*—10m3 +35m? — 50m +24=0 ....... D

By hit and trial (m — 1) is a factor of (1)

~(1) May be rewritten as

m* —m3 —9m3 +9m? + 26m? — 26m —24m+24 =0
>m3(m—-1)—-9Im?(m—-1) + 26m(im—1) —24(m—-1) =0
>m—-1D(mM3>—9m? +26m—24)=0 ...... ©)

By hit and trial (m — 2) is a factor of (2)

~(2) May be rewritten as

(m—1)(m>—2m? —7m? + 14m + 12m — 24) = 0
>m—-1D)m?*(m-2)—7m(m—-2)+12(m—-2)] =0
>m-1)(m?*-7m+12)(m—-2)=0
>m-1)m-3)(m-4)(m-2)=0

> m=1234

C.F. = ce® + ce® + cze3* + cpe®™

Since F(x) = 0, solution is given by y = C.F

>y = ge*+ e + e’ + et

3 2
Example41 Solve the differential equation: % +2224 Z—i =0

dx?
Solution: = (D3 +2D?*+ D)y =0
Auxiliary equation is: m3 +2m? +m =0
>mm?+2m+1)=0
>mim+1)%2=0
> m=0,-1,-1
CF.=c¢ + (c; +c3x)e™
Since F(x) = 0, solution is given by y = C.F

=y = ¢+ (c;+c3x)e”™

Example42 Solve the differential equation: % -2 ZZTZ +y=0
Solution: = (D*—2D?+ 1)y =0

Auxiliary equation is: m* —2m? +1 =10

= (m?-1)2=0

>m+1)*(m-1%=0

> m=-1,-1,1,1

C.F.= (c; + czx)e™ + (c3 + cux)e”

Since F(x) = 0, solution is given by y = C.F
=2y = (¢ +cx)e™ 4+ (c3 +cux)e”
Example43 Solve the differential equation: % -
Solution: = (D3 —2D+4)y =0

Auxiliary equationis: m3® —2m+4=0 ....... @



By hit and trial (m + 2) is a factor of (1)

~(1) May be rewritten as

m3+2m? —-2m? — 4m+2m+ 4=0
>m*(m+2)—-2m(m+2)+2(m+2)=0
>m+2)(m?-2m+2)=0

> m=-2,1+i

C.F.= cie ™ + e*(c, cos x + ¢ sinx)

Since F(x) = 0, solution is given by y = C.F

>y = e+ e*(c, cosx + c3sinx)

Example44 Solve the differential equation: (D? — 2D + 5)?y =0
Solution: Auxiliary equation is: (m? —2m + 5)....... ©
Solving (1), we get

> m=1+2i,1+2i

C.F.= e*[(c; + ¢, x) cos 2x + (c3 + ¢4x) sin 2x

Since F(x) = 0, solution is given by y = C.F

>y = e*[(c; + ¢, x)cos2x + (c3 + ¢,x) sin 2x]
Example45 Solve the differential equation: (D? + 4)3y =0
Solution: Auxiliary equation is: (m? + 4)3....... €

Solving (1), we get

= m = +2i,+2i,+2i

C.F.=(c; + c3x + c3x%) cos 2x + (¢4 + c5x + cgx?) sin 2x
Since F(x) = 0, solution is given by y = C.F

>y = (c;+cx +c3x?)cos2x + (¢y + csx + cgx?) sin 2x
Shortcut Rules for Finding Particular Integral (P.1.)
Consider the non- homogeneous linear differential equation

f(D)y =F(x),F(x) #0
= (kgD + kD™ 1+ -+ k,_y D+ k,)y = F(x)

Then P.I = Tlm F(x), ClearlyP.I. =0 if F(x) =0
Case I: When F(x) = e

_ 1 ax:; ax
Use the rule P.I = 5 ,fCa) #0

In case of failure i.e., if f(a) =0

- ax — 1 ax !
P.1 X o€ X 7@€ ,f'(@)#0
If f'(@) =0,P.l.= x2——e®, f"(a) # 0 and so on

f'(a)
2
Example46 Solve the differential equation: % -2 % + 10y = e**

Solution: = (D? — 2D + 10)y = e?*
Auxiliary equation is: m? —2m+10=0



> m=1+3i

C.F. = e*(c; cos 3x + ¢, sin 3x)

1 1 1 .
PlL=——F = ——e?* =——¢e?* byputting D = 2
7oy T =7, e =75 e™ by putting
— 1 2x — i 2X
22-2(2)+10 10

Complete solutionis: y = C.F. +P.l

. 1
=y = e*(c; cos3x + ¢, sin 3x) +Eezx

2
Example47 Solve the differential equation: % + Z—z -2y =e¢e”
Solution: = (D? + D — 2)y = e*
Auxiliary equation is: m?> +m—2 =0
=>m+2)m-1)=0
> m=-2,1
C.F.= e ™ + c,e*
1 1 .

PlL=———F =——e¢* ngD =1 1) =

) (x) oy € putting (D=0
. — 1 X .. — 1 ax —_
~P.IL X5 € P.L=x5—e if f(a)=0

— x—_Y _x g
= P.l =X T rme (D) #0
=Pl =X

3

Complete solutionis: y = C.F. +P.I

X

— xe
=y = e et t—

2
Example48Solve the differential equation: % — 4y = sinh(2x + 1) + 4%

Solution: = (D? — 4)y = sinh(2x + 1) +4*
Auxiliary equation is: m? —4 =0

> m= 12
C.F. = cie® + c,e™**
1
Pl.=— F(x
f(D) ()
1
= ——(sinh(2x + 1) + 4*
f(D) ( ( ) )
1 e(2x+1)_e—(2x+1) 1 1 4
:D2—4( 2 )+DZ—4(exog )
. e¥—e™* log 4
v sinhx = and 4* = ¢*'°8
— ¢ 1 2x _e__l 1 e~2% 4 1 exlog4
2D2%2-4 2 D2-4 D2—4

Putting D = 2,—2 and log 4 in the three terms respectively
f(2) =0and f(—2) =0 for first two terms

~ Pl =Exi62x_ﬁxie—2x 1 xlog4
272D 2 72D (log4)%— 4



. — 1 axi —
‘PlL=xge if f(a) =0

Now putting D = 2, —2 in first two terms respectively

4_x

=P | = Ee2x + e_lxe—Zx +  gXloga—yx
8 8 (log4)?- 4
Pl = x (e(2x+1)+ e—(2x+1)) 4%
==y 2 (log4)?— 4
X X -X
=PI =Zcosh(2x + 1) + ——— 2 coshx =222
4 (log4)2— 4
Complete solutionis: y = C.F. +P.l
— 2x —2x 4 X 4%
>y = e+ e+ 4Cosh(2x +1)+ Gogiy—4

Case II: When F(x) = Sin (ax + b)or Cos (ax + b)

If F(x) = Sin (ax + b) or Cos (ax + b), put D? = —a?,

D3 = D?D = —a?D, D* = (D?)? = a*,......
This will form a linear expression in D in the denominator. Now rationalize the denominator to
substitute D? = —a?2. Operate on the numerator term by term by taking D = :—x

In case of failurei.e., if f(—a?) =0

Pl = xf,(iaz) Sin (ax + b) or Cos (ax + b), f'(—a?) # 0

If f'(—a?) =0, P.l.= x?

1
"' (-a?)
Example49 Solve the differential equation: (D? + D — 2)y = sinx

Sin (ax + b) or Cos (ax + b), f""(—a?) # 0

Solution: Auxiliary equationis: m?> +m —2 =0
>m+2)m—-1)=0

> m=-2,1
C.F. = cje™®* + c,e*
Pl =— F(x) = —sinx = ———sinx
f(D) f(D) D2+D-2
putting D? = —12 = —1
Pl= —sinx = D2+3 sin x , Rationalizing the denominator
D-3 D<-9
__ (D+3)sinx

, Putting D? = —1

~P.L= % (D sinx + 3 sinx)

= % (cosx + 3 sinx)
Complete solutionis: y = C.F. +P.
>y = e + e —11—0 (cosx + 3 sinx)
Example50 Solve the differential equation: (D? + 2D + 1)y = cos?x
Solution: Auxiliary equation is: m? +2m+1 =10
(m+1)?2?=0=>m=-1,-1
C.F. = e™(c; + c3x)



Pl =—— F(x) = L cos?x = 1 (1+C052x)
F(D) f(D) D2+2D+1 2

1 1 ox , 1

1
=—-———8€ + = ———cos 2x
2 D2+2D+1 2 D2+2D+1

Putting D = 0 inthe 18 term and D? = —22 = —4 in the 2" term
1
E 2D-3

l 2D+3
2 4D2? -32
(2D+3) cos2x

CcoS 2x

PI=1+
2

cos 2x, Rationalizing the denominator

, Putting D? = —4

Il
N =
+

1
2

— % (—4sin 2x + 3 cos 2x)

Nowy = C.F.+P.

>y = e (¢ +cx) + § — % (—4 sin 2x + 3 cos 2x)
Example51 Solve the differential equation: (D? + 9)y = sin 2x cos x
Solution: Auxiliary equation is: m? +9 = 0

> m=43i

C.F. = ¢; cos 3x + ¢, sin 3x

_ 1 R 1t e :
PL=2 Flx) = 75y Sin2xcosx = S (sin 3x + sinx)
=2 __sin3x + - sinx
2 D?+9 2 D249

Putting D? = —9 in the 1stterm and D? = —1 in the 2" term
We see that f(D? = —9 ) = 0 for the 1% term
“Pl =:xtsin3x+ - —sinx

2 2D 2 8

1

wPl = x—
f'(-a?)

Sin(ax+b), f'(—a?) #0

=P.l.= —=cos3x + L sinx
12 16
Complete solutionis: y = C.F. +P.l
=y = (¢, C0s83x + C,sin3x —1x—2cos 3x + isinx
Case I11: When F(x) = x", nis a positive integer

Pl =—— F(x) = ——x»
f(D) f(D)

1. Take the lowest degree term common from f( D) to get an expression of the form [1 + ¢(D)]
in the denominator and take it to numerator to become [1 + ¢(D)]™*

2. Expand [1 + ¢(D)]! using binomial theorem up to n™ degree as (n+1)" derivative of x™ is
zero

3. Operate on the numerator term by term by taking D = %

Following expansions will be useful to expand [1 + ¢(D)]™?*
e (I1+x)T=1—-x+x2—x3+--
e (1—-x)T=1+x+x2+x3+--
2
Yy

Example52 Solve the differential equation: &y _ y=5x—2
dx?



Solution: = (D? — 1)y = 5x — 2
Auxiliary equationis: m? —1=0

> m=z=1

CF.=ce*+ce™

mfﬁgﬂ) 2)
= T Dz) (5x = 2)

=—(1-D2?)"1(5x — 2)
= —[1+ D%+ -](5x — 2)
= —(5x—2)
“Pl.=-5x+42
Complete solutionis: y = C.F. +P.
>y = ce*+tc,e ™ =5x+2
Example53 Solve the differential equation: (D* + 4D?)y = x? + 1
Solution: Auxiliary equation is: m* + 4m? = 0
= m?(m?+4) =0
>m=20,0,+2i
C.F. = (c1 + cyx) + (c3 cos 2x + ¢, sin 2x)

P.l = m F(X) = 4-D2 (x + 1)

= (x? +1)

D4+4D2

= ——x(x* + 1)
4-D2<1+ )

1 D2\~

=4)7(1+T) 1(X2+1)

-2+ e+

402

- 4
1(x*  x2
=G+
Complete solutionis: y = C.F. +P.l
4— 2
>y = (c; +cyx) + (c53c082x + ¢, Sin2x) + - (12 + x:)

Example54 Solve the differential equation: (D? — 6D +9)y = 1 + x + x?
Solution: Auxiliary equation is: m?> —6m +9 =0



> (m—-3)2=0=>m=3,3
CF. = e3"(c1 + ¢, x)

P.1. —f—(D) F(x) —D2 — 9(1+x+x)
1
=——(1+x+ x?
9(1——23D+ —Dgz) ( )

—(1-@-2) aree

:1+(?— %2)+(%— %2)2+"'](1+X+x2)

.1+___+T+ -](1+x+x2)

1+ +—+ ](1+x+x)

=1
9
1
9
_1
9L
1(1+x+x +0+2+% 4 0404+2)
9 3 3 3
“PA=2(2+ 24 x2)
Complete solutlon is: y = C.F.+P.
>y = e3x(cl+czx)+%(§+7?x+x2)

Case IV: When F(x) = e**g(x), where g(x) is any function of x

1 ax — ,ax
Use the rule: —— )e glx) =e (f(m > g(x ))

Example55 Solve the differential equation: (D? + 2)y = x%e3*
Solution: Auxiliary equation is: m?> +2 =0
S>m?2=-2>m=+VZi

CF = (c1 cos(\/Zx) +c, sin(\/Z X))

Pl =—— F(x) = ——x%e*

(D+3)2+2

1
— 53X xz
D2+6D+11

-1
— (14 (24 2)) w
11 11 11

S 1—(@+ D—2)+(@+ D_2)2+...]x2

11 11 11 11 11
3x 2 2
e 6D D 36D
SEL T
11 11 11 121
3x 2
e 6D 25D
Sl
11 121

3x
e 12x
11 11 121



e3% 12x 50
N -
11 11 121

Complete solutionis: y = C.F. +P.I
. 3x 12 50

>y = (¢ cos(VZx) + ¢, sin(VZ x)) + el—l(x2 — 1—1x E)

Example56 Solve the differential equation: (D3 + 1)y = e?* sinx

Solution: Auxiliary equationis: m®>+1=0

>m3=-1

1++/3i
2

>m=—1,
_ x V3 . (V3
CF.=ce™+ ez (CZ cos (7x) + ¢35 sin (7x))
_ 1 _ 1 2x x
Pl == F(x) = ——e*sinx

— p2X

sinx
(D+2)3+1

1 .
=e sSinx
D3+6D2+ 12D+9

1 . .
= e?* ———sinx , Putting D? = —1
—D—6+ 12D+9
1 .
= e%* sin x
11D+3

9y 11D-3

= e** ———sinx, Rationalizing the denominator
121D4-9

2Xx
= —%(110 —3)sinx , Putting D2 = —1

2x
~Pl = —%(11 cosx — 3sinx)

Complete solutionis: y = C.F. +P.l

>y =ce *+ ez (CZ cos (?x) + ¢3 sin (?x))
2x

e .
E(ll cos x — 3sinx)

2

Example57 Solve the differential equation: % — 4y = x sinhx
Solution: = (D? — 4)y = x sinhx
Auxiliary equation is: m?> —4 =0
> m=42
C.F.= cie® + ce
1
PlLL=———F
oy T
1 .
=0 (x sinhx)
1 eX—e™X . eX—e™*
=D2_4(x - ) s sinhx = .
1 ex e ¥
= (1S -2 )
_eX 1 e ¥ 1



eX 1 e * 1

- 7(D2+2D— 3)x 2 Dpz-2p-3
_e* 1 X e 1
2 —3(1—%2—?) 2 —3(1—%+?)
L = G
6 3 3 6 3 3
= —e—(l +2)x +i(1 —Q)x
6 3 6 3
6 3 6 3
_ _f(ex— e‘x) _z(ex+ e_x)
T3 2 9 2
~P.l.= —Xsinhx —2coshx
3 9
Complete solutionis: y = C.F. + P.I
Sy = e+ e — zsinhx —%coshx

Example58 Solve the differential equation: (D? + 1)y = x? sin 2x
Solution: Auxiliary equationis: m?>+1 =0

=>m? = -1

>m==*i

C.F.=c;cosx + c,sinx

Pl =— F(x) = —

f(D) D2+1

x?sin 2x

— ; 1 .2 i2x
Imaginary part of o Xe

1 i i 1
Now xZeLZx — esz x2

DZ+1 (D+2i)2+1
— pi2x 1 x2
D2+4i%+ 4iD+1
— in; 2
D2+ 4iD-3
— pi2x 1 2

- o N1—-1
—el2x D2 4iD
(2 )
3 L 3 3
—eizx [ D2 4iD Dz 4iD\?
=+ )+ G D) |
—el2x T D2 . 4iD 16i2D2
i E ek e N L
—el2x T 13D2  4iD
= 1-— + = 2
3 L 9 3
—el2x [ 26 . 8x
= x? ——+ l—]
3 L 9 3

= —%(COSZX + i sin 2x) [xz —%+ i%x]
=~ P.I. = Imaginary part of %xzeizx =2 (S—x cos 2x + (xz - E) sin Zx)
D4+1 3\3 9

= _%xcos 2x + %(26 — 9x2)sin 2x



Complete solutionis: y = C.F. +P.

=y =c,cosx+ c,sinx — 8?xcos 2x + %(26 — 9x2) sin 2x
Example59 Solve the differential equation: (D? — 4D + 4)y = x?e?* sin 2x
Solution: Auxiliary equation is: m? —4m +4 =0

= (m — 2)?

>m=22

C.F. = (61 + cyx)e*

P.l = ﬁ F(x) = 1D+4 x2e?* sin 2x
= e (D+2)2—i(D+2)+4x2 sin 2x
= erizxz sin 2x

1 .
= ez"—fx2 sin 2x dx

_ [( 2)( cos Zx) — (2%) ( sm2x) 2) (cosz)]

1 : 1
= ezxg[—zx cos 2x + Ex sin 2x + ; COs Zx]

= e?* [—%fx2c052x+ %fxsiandx+ifcostdx]
— p2x [_i[(xz) (sinZZx) _ (ZX) (—co: Zx) n (2) (—si: Zx)] n
oo ) o (222 )

—x2 x 3 .
L P =e%* [Tsm 2x — 5 €OS 2x + gsm 2x

Complete solutionis: y = C.F. +P.I

>y = (¢ +cx)e?™ +e?* [_sz sin 2x — gcos 2x + Zsin Zx]

Case V: When F(x) = x g(x), where g(x) is any function of x
Use the rule: —(x g(x)) =x (D)g( x) + (dD f(D)) gx)

Example60 Solve the differential equation: (D? + 9)y = x cos x
Solution: Auxiliary equation is: m? +9 =0

>m?=-9
>m = +3i
C.F. = (¢; cos 3x + ¢, sin 3x)
1
P.I. mF(x) = ;X COSX
= x—— cosx + —22_ cosx
~ T D249 (D2+9)2

cosx, Putting D? = —1

1 —2D
= X—— coSx +
-1+49 (-1+9)?
X COS X 2D cosx

8 64
X COSX 2D cosx

8 64



X COSX sinx
8 32

Complete solutionis: y = C.F. +P.l

X COSX sinx

_l_
8 32

Example61 Solve the differential equation: (D? — 1)y = xsinx + (1 + x2)e*
Solution: Auxiliary equationis: m? —1=0

P =

=y = ¢ cos3x +c,sin3x +

>m=+1
CF.=ce* +ce”*
Pl =— F(x) = 2)ex
i () = )e®)
-2D .
No WSIHX
_ 1 -2D } . 2 _
= X— sinx + —— Cip: Sinx, Putting D* = -1
=—1(xsinx+cosx)
2 e*
)e (D+1)2 1( +x)
— X
=e* — 2D(1+x)
— pX 2
- ¢ 2D(1+§)(1+x)
_x L p\~* 2
_p D(1+2) (1+x2)
1
— X __ _ =
—e* —|1-2+2 ](1+x)
=e¥ — 1+x2—x+1]
2D 2
:exi xZ_x+ E:l
2p L 2
eX[x® x?  3x
=55+ %]
3x
.'.P.I.:——(xsmx+cosx)+ [——7+7
Complete solutionis: y = C.F. + P.I
>y =ce*+ce” ——(xsmx+cosx)+ [——?+3?x

Case VI: When F(x) is any general function of x not covered in shortcut methods I to V above
Resolve f(D) into partial fractions and use the rule:

ﬁ F(x) = e % [ e%* F(x) dx

Example62Solve the differential equation: (D% + 3D + 2)y = e®"
Solution: Auxiliary equationis: m?> +3m+2 =10
>m+1)m+2)=0

>m=-1,-2

CF.=ce™ +ce



Pl =— F(x) = ———— e°

f(D) D2+43D+2
_ 1 e*
T (D+1)(D+2)

_ ( 1 _ 1 )eex

T \(D+1)  (D+2)

— e—xfexe foer e*

=e* [ De? dx — e‘zxfexDee dx

= e ¥e® — e 2%[e¥e?” — [e*e®"dx], Integrating 2" term by parts
~xge™ _ o=2x[gXee™ — [ De”dy]

eex _ e—Zx[exeex _ eex]

Z Pl = e 2Xee”

Complete solutionis: y = C.F. +P.I

=€

=y =ce ™+ e 4 e e

Example63 Solve the differential equation: (D? + 4)y = tan 2x
Solution: Auxiliary equation is: m? +4 =0

>m = 12i

C.F. = 61 cos 2x + ¢, sin 2x

PlL=—F =
(D) x) =
_ ;t 2
T (D-20)(D+2i) an 2x
1 1 1
T4 ((D—Zi) "~ (D+20) ) tan 2x

Pl = —(—taan) :(;taHZx) ....... )

4i D+2

1 ; _
Now ~—tan 2x = e2iX [ o=21X tan 2x dx

= 2% [(cos 2x — i sin 2x) tan 2x dx

_ le _ sin?2x
= J(sin2x — i st)

1-cos?2x
= mf(stx—l )dx
coS2x

= e?¥ f(sian —isec2x +icos2x)dx

= 2 (—%cos 2x — éloglsec 2x + tan 2x| + ésin Zx)

L — p2ix (_lp-2ix _ L
so—tan2x = e lx( ~e i 2loglsec2x+tan2x|)...(@
Replacing i by - i

1 — —2ix(_l 2ix i )
——tan2x = e e +2log|sec2x+tan2x| .3

Using @and 3) in (1)

P.l.= i [eZix (—%6‘2”‘ — i'loglsec 2x + tan 2x|)]

1

_Z[e—Zix( . e?x 4 1 loglsec2x+tan2x|)]



== [—% — ée”xloglsec 2x + tan 2x| + % — %e_Zi"loglsec 2x + tan 2x|]

1 .eZix+ e—zix
= —lTloglsec 2x + tan le]
l

“Pl=— i [cos 2x loglsec 2x + tan 2x|]
Complete solutionis: y = C.F. +P.l.
=y = ;082X + ¢, Sin2x — % [cos 2x loglsec 2x + tan 2x|]

2.8.4 Differential Equations Reducible to Linear Form with Constant Coefficients

Some special type of homogenous and non-homogeneous linear differential equations with variable
coefficients after suitable substitutions can be reduced to linear differential equations with constant
coefficients.

2.8.4.1 Euler—Cauchy Differential Equation
The differential equation of the form:

”dy+k1

ko x dn1+ +kn1x +kny—F(x)

is called Euler—Cauchy Equation and it can be reduced to linear differential equations with constant
coefficients by following substitutions:
x=¢e'! >logx=t

dy dydt _dyl
dx dt dx dt x

:x%=%=Dy,WhereD =—
Similarly, x222 = p(D — 1)y, x3d—y = D(D — 1)(D — 2)y and so on.
Example64 Solve the differential equation:

3dy+3 2d—y+x—+8y—13cos(logx)x>0 ....... D

Solution: This is a Euler—Cauchy Equation with variable coefficients.
Putting x = et - logx =t

= x— = Dy, x =DM -1y and x*—==D(D - 1)(D —2)y
~(1) May be rewritten as

(b(b-1)(D-2)+3D(D - 1) +D+8)y =13cost

= (D3 +8)y =13cost ,D =E

Aucxiliary equation is: m®>+8 =0
>m+2)m?-2m+2)=0
> m=-2,1+V3i
C.F. = e 2t +et(c, cos V3t + ¢ sinV3t)
= C—l + x(c2 cos(\/Br log xX) + c3 sin(\/Br log x)

P.l. =

N f( D)
= 13——cost , Putting D? =-1
—-D+8



= 13%C05t = 13%C05t Putting D? = —1

P.I.=1E(8cost + D cos t)
= 1; (8cost —sint)
= 1;(8 cos(log x) — sin(log x))
Complete solutionis: y = C.F. + P.I
>y = ;—; + x(c, cos(V3logx) + c; sin(v3logx) + % (8 cos(log x) — sin(log x))

2
Example65 Solve the differential equation: x% — d =—
dx dx T 1+x

Solution: This is a Euler—Cauchy Equation with variable coefficients.
Putting x = et = logx =t

:;x——Dy, —D(D—l)y
~(1) May be rewrltten as
e 3t
OO -D+D-Dy=-—
2 31'5 _ d
=>(D —l)y_ 2t’D=E
Auxiliary equatlon issm2—1=0
> m==1
CF.= et + et
- a
= + Cyx
1 1 e3t
P.l.= F(D) F(x) = D2-1 1+e2t

_ 1 e3t _1( 1 1 ) e3t
T (D-1)(D+1) 1+e2t  2\(D-1) (D+1)/ 1+e2t
1 eSt 1 eSt )
2 \(D-1) 1+e?t (D+1) 1+e2t

(
=2 (et fe—t;“
=3 (e

_1

dt — e

) D—Jlra F(x) = e [ e%* F(x) dx

[ de— et [ 2 )

2t=u :>2e2tdt=du
f—du—e‘tf—du)
tlog(1 + ) —e‘tf1+u 1du)

(
(e'log1 +w) —e™t [ (1 - =) du )
(e
(e
(

Put
~P.1=

A

“log(1 +u) —e t(u — log(1 + u))
tlog(1 + e?t) —et(e? —log(1 + e?t))

I S e o e N

xlog(1+ x2) —= (x —log(1 + xz))



= i(x +§)10g(1 + x2) —E

Complete solutionis: y = C.F. +P.

Sy = Cx—1+c2x+ i(x+%)log(1 + x?) —E

>y = Cx—1+c3x+ i(x+i)log(1 +x%) ,c3=0— =
Example66 Solve the differential equation:

x?D* —2xD—4y = x>+ 2logx, x>0 ... D
Solution: This is a Euler—Cauchy Equation with variable coefficients.
Puttingx = e* =~ logx =t
= xD = 8y, x2D? = §(6 — 1)y ,55%
~(1 May be rewritten as

6(6—1)—26—4)y = e?* +2t
= (62—-38 —4)y =e? + 2t

Auxiliary equation is: m? —3m—4 =0
=>m+1Dm—-4)=0

> m=-14
C.F.=ce "+ ce™
4,
T ox o xt
Pl =— F(x) = —— (e + 2t)
£(8) 52-36-4
— 1 2t 1
= s2-354C T 52—35—42t
= —e2 +2——— —t Putting § = 2 in the 1% term
—6 ‘4(1‘T+T)
-1
_ —e”_1<1 _ (5_2_&)> .
6 2 4 4
—e2t 2
S T
6 2 4 4
_ _eZt _ l _ E]
T 6 2 4
—x? 3
P.L.= = — 3 [logx — 3]

Complete solutionis: y = C.F. +P.I

Cy —

_a ﬁ_l[ _E]
:>y—x+x4 . 2logx "

2.9 Method of Variation of Parameters for Finding Particular Integral

Method of Variation of Parameters enables us to find the solution of 2™ and higher order differential
equations with constant coefficients as well as equations with variable coefficients.

Working rule
Consider a 2™ order linear differential equation:



d’y dy _
TP QY =F() ... ©
1. Find complimentary function given as: C.F. = c;y; + ¢;y5,
where y, and y, are two linearly independent solutions of (1)

2. Calculate W = ;11, yy% | W is called Wronskian of y; andy,
1 2
3. Compute u; = — [ 22 Fdx, u, = [ 2D gy

4. Find P.l. = uq1yq + uy,
5. Complete solution is given by: y = C.F. + P.1

Note: Method is commonly used to solve 2™¢ order differential equations, but it can be extended to
solve differential equations of higher orders.

2
Example67 Solve the differential equation: ZTZ +y = cosecx

using method of variation of parameters.

Solution: = (D? + 1)y = cosecx
Aucxiliary equation is: (m? +1) =0

=> m=*i

C.F.= cicosx + c,sinx = ¢c;y; + ¢y,

sy, =cosx and y, = sinx

Yyi. Y2 cosx Sinx
= / 1| = =1
w |J’1 Y2 | |—sinx COS X
u1=—f%(x)dx=—fsinx cosecx dx = —fldx=—x
Uy = f%(x)dx = [ cosx cosecx dx = [ cotxdx = logl|sin x|
x PI - u1y1 + uzyz
= —xcosx + sinx log|sin x|
Complete solutionis: y = C.F. =P.I
=y =, Cosx + ¢, sinx — xcosx + sinx log|sin x|
Example68 Solve the differential equation: (D? — 2D + 1)y = e*
using method of variation of parameters.
Solution: Auxiliary equation is: (m? —2m+1) =0
>m=1,1
CF =(c;+cx)e* =ce*+c,xe* =cy; + 6y,
~y;=e*andy, = xe*
Yi Y2 ex x e*
W = ! i = = e?¥
|3’1 Y2 | e* xe*+ el ©

_ (y2F) _ [ xe¥e* _ . _ﬁ
U, = f—W dx = fezx dx = fxdx— .
U, = fylF(x)dx = fexex dx = [1dx = x

w eZX
x PI - u1y1 + uzyz

2 2

X X
= ——e* +x%e¥ ==¢*
2 2



Complete solutionis: y = C.F. +P.I
2
=>y=(c+cx)e* +x?ex
2
Example69 Solve the differential equation: ZTZ + 4y = xsin2x

using method of variation of parameters.

Solution: = (D? + 4)y = x sin 2x
Aucxiliary equation is: (m? +4) =0

=> m= 12

C.F. = ¢y cos2x + ¢, sin2x = ¢y y; + ),

~y; = cos 2x and y, = sin 2x

V1 V2 | _ | cos 2x sin 2x

W= iy, —2sin2x 2cos2x!

— —fyzF(x)dX — _lfxsinz 2x dx = —ifx(l—COS‘l-X)dx

=——[ - e (22) - @ (- <=2 ||

x sin4x Ccos 4x
8 16 64
F(x 1 . 1 .
U, = fle()dx =—fxsm2xc052x dx = fosm4x dx

- e (-222) o (-2

_ X cos4x . sin 4x]
o 16 64

x PI - u1y1 + uZyz

x%2  x sin 4x cos 4x
= COS 2Xx [—§+ P + sin 2x

X cos4x . sin 4x]
16 64

= f—G (sin4x cos 2x — cos 4x sin 2x) + a (cos 4x cos 2x + sin4x sin 2x)

x2 x . 1 x2
——cos2x =—sin2x 4+ —cos2x ——cos 2x
8 16 64 8

Complete solution is: y = C.F. +P.I

. x . 1 x2
= y = ¢4 COS 2X + ¢, Sin 2x +1—6$1n2x +6—4cos 2x — 5 Cos 2x

Example70 Solve the differential equation: (D2 — D — 2)y = e(¢"+3%)
using method of variation of parameters.

Solution: Auxiliary equation is: (m?> —m —2) =0

> m=-1,2

CF. =ce™+ce* =gy, +6y,

sy, =e*andy, = e?*

V1 Y2 —x 2x
w=|20 = ¢l =3
V1 V2 —e 2e
yoF (%) ezxe(ex+3x) e2x g€ e3x
U, =—J)J=—dx=—J) —— —
, = - fun fee ferese

= —%f e* e dx  Putting e* = t = e¥dx = tdt



Uy = —gf t3etdt = —%[(t3)(et) — (3t2)(e") + (6t)(e") — (6)(e")]
S>u = —i[e“ — 3e?* + 6e* — 6]

(e x) xex e
z_fylF(x)d = [e - x—fe “dx 2 fe"eedx=T

~P.l= u1yq + uy,

X
ee

= - : [e3% — 3e?* + 6e* — 6] +

— X
X ee er

3
= [3e* — 6 + 6]
Complete solutionis: y = C.F. + P.I

ex
Sy=cge *+c e+ %[Be" — 6+ 6e7*]

Example71 Giventhat . y; = xandy, = i are two linearly independent solutions of the differential
dzy dy

equation: x? P tX -y =x x# 0. Find the particular integral and general solution using
method of varlatlon of parameters.
ldy 1 1
Solution: Rewriting the equation as: — + T2 =
Giventhat ~ y;, = xandy, = %
~CF =y, +cy, =cx+ %
x l
w=|" yf|= * —_2
Yi Y2 1 —= x
x2
Y2F (x) _ (11 Xdx =1 1
__f—W dx_fx.x.2 = fdx— ~logx
_ (y1F(x) _ 1x . _ﬁ
z—f—W dx = fx.x.zdx— "

Complete solutionis: y = C.F. +P.I
— C2 4 X _x
=>y—clx+x+210gx .

2
Example72 Solve the differential equation: x? 37’2' — 4x% + 6y = x%logx

using method of variation of parameters.

Solution: This is a Euler-Cauchy linear differential equation with variable coefficients.
Putting x = et logx =t

= x— Dy, x =D(D -1y

=~ Given dlfferentlal equation may be rewritten as
(D(D—1) —4D + 6)y = te?
= (D? — 5D + 6)y = te?t

Auxiliary equationis: (m—2)(m—-3)=0



> m=23
C.F.= cie® +c,e3' = 1y, + ¢y,

ny, =eandy, = e

2t 3t
W = y1, y%|=|e’2t e3t|=65t
Vi Y2 2e 3e
_ ([ 2F® o etee® __t
u =—J —=dt = | —— dt = [ tdt = -

ZttEZt

—— dt = [te~tdt = [()(—e™) — (D(e™0)]

Uy = fy_1‘:/(t) dt = fe

Complete solutionis: y = C.F. + P.I
=y =ce® +ced3t —e? (§+ t+ 1)
ory = c¢;x%+ ¢, x3 — x? (@+logx+ 1)
=y =c3x% + ¢y x3 —xz—z(logx)2 —x%logx,c3=¢; — 1
2.10 Population Dynamics

A Population is the group of individuals of same species, and population dynamics is the study of
population changes over time, which can be estimated by mathematical modelling. Here we confine
our study to two most practical growth models viz. Exponential and Logistic patterns.
. Exponential Model
An exponential growth model is possible only if there are unlimited resources and the population
can reproduce to its maximum capacity. This is generally not feasible under natural phenomena
due to limited available resources. Exponential growth can be achieved if all favorable conditions
are provided in a specific environment, for example, bacteria culture in a laboratory. Exponential
growth can be represented by a J shaped curve as shown in Figure4. If N(t) denotes the size of
the population at any time t, then under normal circumstances rate of change of population is

directly proportional to population itself i.e., Z—IZ « N .



= Z—IZ = rN , where r is the relative growth rate

= =t
N

Integrating both sides, we have
dN
7 = f’f'dt

= logN =rt +logc

N N N
= log= = rt =e'%8c = "t 2= = ¢t
C c

Population size

=>N = ce™ is the required solution of the
given differential equation.

If N, be the initial population at t = 0, then
population at any time t is given by

N(t) = Nye™
Example73 The population of rabbits in a zoo by the end of year 2010 is 1125 and by the end
of the year 2011 is 1242. Assuming population growth to follow exponential model by
providing all necessary resources,

Time
Figure 4

(a) Determine the relative growth rate
(b) Write the general equation for population dynamics in exponential model
(c) Calculate the time required for the population to be doubled
(d) Estimate the number of rabbits by the end of the year 2021
Solution: If N denotes the size of the population at any time ¢, r is the relative growth rate
and Ny(at t = 0) be the initial population by the end of year 2010. Then the general equation
for population dynamics in exponential model is given by N(t) = Nye™
= N(t) = 1125e™ = N, = 1125

(a) Population by the end of year 2011, i.e., att = 1 is 1242

= N(1) = 1242 = 1125e"

T =22 = 1.104
1125

=r =1In1.104 = 0.0989
(b) The general equation for population dynamics is given by:
N(t) = 1125920989
(c) For population to be doubled, i.e., N(t) = 2250
5 2250 = 112500989

2250
— 00989t _ —
1125

= 0.0989t =In2 = 0.6931

06931
"~ 0.0989

(d) We have N(t) = 112500989
=~ The population by the end of the year 2021, i.e., at t = 11 is given by
N(11) = 112519879 = 1125 (2.96803) = 3339 approx.

= e

= 7.008 years approximately



Example74 A sample culture has initially P, bacteria. After five hours, the number of bacteria is
measured to be 5P,. Determine the time required for number of bacteria to be ten times as of initial
number.

Solution: The general equation for bacteria growth is given by
P(t) = Pye™, where P(0) = P,
GIVGﬂ 5P0 = Poesr
= e =5
= 5r=In5 > r=:In5
=~ The general equation for population dynamics is given by:
t
P(t) = Pyes™®
Now for bacteria to grow ten times of initial number
t
10P, = Pyes™®
t
=es™5 =10
==In5 =1In10

5In10
=t =

= 7.1534 hours approx.

1. Logistic Growth
Logistic population growth is more practical approach under limited resources. Logistic
growth takes place under all-natural phenomenon, when a population becomes almost
constant, as it approaches a maximum quantity imposed by limited resources. Logistic
growth produces an S-shaped curve (Figure5), where L is the carrying capacity of the
system. If N (t) denotes the size of the population at any time ¢t and r is the relative growth
rate in the logistic growth model, then the rate Carrying Capacity (L)
of growth of population may be defined bythe L
differential equation:

dN N

E=TN(1—2) @

aNv _ N _T N2
:>dt—rN LN

Equation implies that if L is very large

Populauon size

compared to N, %Nz — 0 and hence Z—IZ ~ rN

Thus, any population follows exponential
growth model for small population number.
This is called as Malthus’s law.

N Figure 5
Now @ 5 — R = rdt
N(1-7)
LdN
N rdt

Integrating both sides
f L _dN = frdt

N(L-N)

> J(E-L)an = [rdt

1
N L-N




= InN —In(L — N) =rt +1Inc, cisan arbitrary constant

=rt
c¢(L—N)

N = cemt
(L-N)

= (L — N) = Nbe™" putting b =%

=L =N+ Nbe™ "t
=L =N+ be ™)

= N(t) = —=

(1+be~"t)
Example75 100 fishes of an exotic species were released in a large fish aquarium of a museum having
a maximum capacity of 1100 fishes. After seven months, there were 220 fishes in the aquarium.
Assuming logistic growth,

(a) Write a general equation that describes the population N(t) at time ¢.

(b) How many fishes will be there in the aquarium after one year?
(c) In how many months the fish population can reach 500?
Solution: (a) The general equation that describes the population N(t) at time t, assuming logistic

. L
growth is N(t) = = @
Here N(0) = 100 and L = 1100
. 1100
Putting t = 0, (1) = 100 = o)
>@1+h)=11 =b=10
S N(t) = —=2 2

(14+10e-T%)

Again, given that N(7) = 220
Putting t = 7, 2) = 220 =

1100
(1+10e~77)

= (1+4+10e ") =5

e "=04=-7r =In0.4
_In04 _ -09163

=>7r= — = 0.1309

- The general equation that describes the population N (t) at time t is given by:

1100
N(t) = (1+10e—0.1309t)

(b) Number of fishes in the aquarium after 12 months is given by
N(12) = 1200 = 357.2834 , i.e., 357 fishes approximately

(1+1OE_0'1309(12))

(c) HereN(t) =500, t=?
We have N(t) = 10

(1+10e—0.1309t)
1100
(1+10e—0.1309t)

= (14 10e701309) = 2.2
= 01309 = 0,11

= —0.1309t =1n0.11

= 500 =



In0.11 —2.2073
>t= =

= = = 16.8625 months, i.e., nearly 17 months
—-0.1309 —0.1309

2.11 Orthogonal Trajectories
Orthogonal trajectories are the curves that are perpendicular to a given family of curves. Let the

family of curves F(x, y, c) be the solution of a given differential equation Z—z = f(x,y); then the
family of curves G(x,y,d) represents the orthogonal trajectory of F(x,y,c), if every curve of
G(x,y,d) is orthogonal (perpendicular) to each curve of the family F(x, y, ¢).

Example76 Find the orthogonal trajectories of the families of parabolas x = ky?

Solution: Given family of parabolas is x = ky? ...(1)

Differentiating both sides of (1) with respect to x
dx dx 2ky 2x y

where m is the slope of the family of parabolas x = ky?

= slope of orthogonal trajectories = —i = — Z;X
Hence the differential equation of orthogonal trajectories is given by
v _ 2 "t
dx y
= ydy = —2xdx

Integrating both sides, we have
[ ydy = [ —2xdx ‘
= y?z = —x% + ¢, cisan arbitrary constant |
= 2x*+y%*=d ,d = 2cisanarbitrary constant
2 2x2+yt=d Figure 6
Figure 6 shows the required orthogonal trajectory, which is a family of ellipse.
Example77 Find the orthogonal trajectories of the family of circles x? + y? = r?
Solution: Given family of circles is: x? + y? =12 ...(D)
Differentiating both sides of (1) with respect to x

2x+2y2=0 =o%=_Z_p,
dx dx y
where m is the slope of the family of circles x? + y? = r?
= slope of orthogonal trajectories = —i = %

Hence the differential equation of orthogonal trajectories is given by
v_y b _

dx x y x
Integrating both sides, we have
f @ _ [
y - x

= logy =logx + logc, cisan arbitrary constant
= logy =logecx =y =cx
~ y = cx is the required orthogonal trajectory.



Example78 Find the orthogonal trajectories of the family of curves y = e%*
Solution: Given family of curves is: y = e®* ...(1)
Differentiating both sides of (1) with respect to x

dy ax (:)
— = aqae =m
dx

where m is the slope of the family of curves y = e**
To remove the constant a from m,

Taking natural log on both sides of equation (1)

Iny

s>lhy=ax =>a= "

o Iny .
Substituting e®* = yand a = % in 2)

>m =20y
X
= slope of orthogonal trajectories = il 2
m ylny
Hence the differential equation of orthogonal trajectories is given by
ﬂ _ X
dx ylny

= ylnydy = —xdx
Integrating both sides, we have

Jylnydy = — [ xdx (3
Now let] = [ ylnydy

2
=>I=y(y1ny—y)—(l—y7)+cl, v [Inydy =ylny—y

2 2
=20 =y(ylny -y +L+c 21=2@hy -y +>+c

2 2 2 2 2
y‘lny y° 'y y'Iny 'y
> =22 4% 4 = 1=2"-L+4¢ ..
2 2 4 1 2 4 1 @
Using (4) in 3)
yZlny  y? x2 .
ST ta=-T+t6.q and c, are arbitrary constants

. 2x? —y? + 2y?Iny = c is the required orthogonal trajectory.

2.12 Modeling of Free Oscillations of a Mass-Spring System

Consider an undamped (unaffected by any external forces like air or friction) mass-spring system as
shown in Figure7. Assume that the spring can resist both extension and compression with stiffness
constant ‘K’. The system is purely theoretical because it neglects damping forces resulting in
uninterrupted free oscillations, which is impracticable. Any practical model will always have damping

forces resulting in oscillations to stop eventually.



Suppose we have an elastic spring with
stiffness constant ‘K’ hanging from a fixed
surface (Figure7a). We attach an object with
mass ‘m’, resulting the string to stretch by a
length “y,’ after the system attains its rest

" . TR . S— NF
position (Figure7b). i

Yo

. o . Unstretched
While in rest position, the gravitational force  gpring

on the system acting in downward direction

is mg, and an upwards restoring force ‘F’ . ’-"

also acts on the system due to initial System at J....
displacement ‘y,’. rest

Let's define a reference frame, where the 2 System in
downward direction is the positive y- mg motion
direction, primarily because gravitational b e

forces pull the spring in the downwards direction.

Also, let y = 0 be the equilibrium position of the Figure 7

top surface of the suspended mass ‘m’ and upward is the negative y-direction.

Now, the upward restoring force ‘F’ on the system caused due to string stiffness is directly
proportional to the initial displacement ‘y,’, i.e., F « y,

Note that we have used negative sign because upward displacement is in negative y-direction as per
our reference system.

Again, the downward gravitational force on the system ‘mg’, and the restoring force ‘F’ balance each
other, so that the system is at rest in its equilibrium position.

>F+mg=0 ..Q2
From (D) and (2), —ky, + mg = 0

=> k= % ...(3), k is the spring stiffness measure.
0

Now, when we pull the mass ‘m’ in downwards direction (Figure7c) by a distance y,

as per Hooke's Law, the system produces an upward restoring force ‘F’ to resist the displacement ‘y’,
such that F o y.

= F =—ky

dzy _
=>m di? = —ky, * Force = mass X acceleration
N d?y n k 0
dt? my -

a?y 2., — iy 2
=> —+w’y =0, putting— = w ne
is the required differential equation of the mass-spring system.

Clearly, (4) is a homogeneous linear equation with constant coefficients.
:>(D2+w2)y=0,D:%
Aucxiliary equation is: p? + w? = 0> p = tiw

C.F.=c;coswt+ c,sinwt



&y

=~ Solution of the mass-spring equation 3

k . .
t—y= 0 is given by

. Kk
y=c coswt + ¢, sinwt, w? =—

Clearly @ is the differential equation of the Simple Harmonic Motion (SHM).

Also, period of oscillation (T) is given by 2:” and frequency (p) is%

.'.T=2n\[@andp=i=\[z
k 21 m

Example 78 Solve the mass-spring equation ZZTZ + 64y =0,y(0)=4,y'(0) =0.

Also, interpret the initial value problem and find the period and the frequency of the simple harmonic
motion.

2
Solution: Given the mass spring equation ZTZ +64y =0 ..(D)

=w? .2

3=

2
Comparing with the equation ZTZ + %y =0,

=L = »? =64
m

Solution of (2) isgiven by y = ¢; cosw t + ¢, sinwt, w? = %

- Solution of (1) is y(t) = ¢, cos8t +c,sin8t .. (3)
Also, given y(0) = 4,ie. ..
Initial condition () implies that the mass is displaced downwards by 4 units to initiate the simple
harmonic motion in the mass-spring system.
Giveny'(0)=0 ..(5)
Also, (5) implies that no initial velocity is given to the system.
Using @) in @) =y(0) =4 =, cos 0+ c,sin0 = ¢, = 4
~ 3)=>y(t)=4cos8t+c,sin8t ..(6)
Differentiating equation (6), y'(t) = —32sin8t + 8¢, cos 8t ... (7)
Using 5 in (7) = y'(0) = 0 = —325sin0 + 8¢, cos0 = ¢, = 0
~ y(t) = 4 cos 8t is the required solution of the given mass -spring equation.

21T 2T T

Also, the Period T =—====-
w 8 4

1 4
Frequency p = el

Example79 An object of weight 4lbs stretches a string by 12 inches. Find the equation of motion if
the spring is released from its equilibrium position with an upward velocity of 10 ft/s. Find the
frequency and the period of the motion.

Solution: Let the equation of mass-spring system be given by % + %y =0

Given that W = mg = 4 Ibs, initial displacement y, = 1ft

Also, y(0) =0, y'(0) =—10 ft/s

NOW,k=@=£=4
Yo 1

Also, W = mg



=4 =32m g = 32.14 ft/s? in British system
= m=1/8
The differential equation of mass spring- system be given is given by
d’y . k a*y _
F+5y— 0 ﬁdtz +32y =0 @
wk=4andm=1/8

Solution of (1)is y = ¢, cosw t + ¢, sin wt, w? = == 32

=y =c, cosV3Zt + ¢, sinV3Zt ... (2)

Given y(0) = 0, y’(0) = —10, substituting in (2), we get ¢; = 0 and ¢, = — ——

V32
>y =— %CZ sin V3Zt is the required equation of motion.
. 21 21 21 T
Also, the Period T = Py ARty
_1_8
Frequency p = e
2.13 Series Solutions and Special Functions
Consider the linear differential equatlon — — 8 + 15y = 0, whose solution is given by

= ¢ e3*+ e = 27 (CIL Z (Sx) . which is a series solution.
y =0 = G ln=0"", 2 4n=0"_,

Some differential equations with variable coefficients cannot be solved by usual methods, and we
need to employ series solution method to find their solutions in terms of infinite convergent series.

2.13.1 Power Series

An infinite series of the form X5, a, (x — xo)™ = ao + a;(x — xo) + a,(x — x4)% + -+, is called a
power series about the point x,; a,, a4, a, ... are arbitrary constants. The point x = x,, is called center
of the power series. The power series about the origin (x, = 0), is called standard power series and
is given as: X0, apx™ = ag + a;x + azx? + - ax™ + -

2.13.2Series Solutions

Consider a second order linear differential equation:

P(x )—+Q( ) y+R(x)y =0..(D

where P(x), Q(x) and R(x) are functions of x or constants.
Ordinary and Singular Points

I.  The point x = x, is called an ordinary point of equation (1), if P(x,) # 0
II.  The point x = x, is called a singular point of equation (1), if P(x,) = 0

a) If both lim (x — xo) Q( ) and lim (x — xo)2 R ; are finite, then the point x = x, is called a
X—Xg X—Xg

regular singular point of equatlon D.
b) If either or both of lim (x — xo) Q( ) and lim (x — x,)2 == R

X—-Xg xX-Xg P(x)
x, is called an irregular singular pomt of equation (1).

are non-finite, then the point x =

Note: Series solution does not exist if x = x,, is an irregular singular point of a differential
equation.



Example80 Find the ordinary points, regular singular, and irregular singular points of the differential
equation x%(x — 1)(x — ) +( —1)—+2xy =0

Solution: Given x?(x — 1)(x — ) +( —1)—+2xy =0..(D)

Comparing with the differential equation P (x) 3732’ + Q(x) Z—z +R(x)y =0

P(x) =x%(x—1)(x—2),0(x) = (x — 1) and R(x) = 2x,

Now for x, to be an ordinary point, P(x,) # 0

>5x2(x—1D(x—-2)#0 >x,€R—1{0,1,2}

- all real numbers except 0, 1 and 2 are ordinary points of differential equation (1)
Again, for singular points P(x,) = 0

ie, x2(x—1)(x-2) =0 = x, € {0,1,2}

». 0,1 and 2 are singular points of differential equation (1)

Now lim(x — 0) =22 — — lim—— = o
x—0 x%(x—=1)(x-2) x—0 X(x=2)

=x = 0 is an irregular singular point of the differential equation (1)

I -1 . (=1 e
Again, hf)r}(x -1) prrv——— }Cl_q e 0 i.e., finite
And lim(x — 1) 2 im22 = o | j.e, finite

x2(x—1)(x-2) x—>1x(x—2)

=x = 1is a regular singular point of the differential equation (1)

& im L= i i.e. finite

Also, lim(x — 2)
x—2 x2(x—-1)(x—-2) x—2 x2

2x s 2(x=2)
x2(x-1)(x—-2)  x—2 x(x—1)

And hm(x — 2)? =0, i.e., finite

=x = 2 is a regular singular point of the differential equation (1)

2.13.3 Algorithm to find series solution when x = 0 is an ordinary point of equation (1), i.e.,
P(0)#0

Step1: Assume the solution of equation () asy = X%, a,x" = ay + a;x + a,x? + -

@

2
Step2: Differentiate (2) with respect to x to find the values of % and %

Step3: Substitute the values of y, — and |n the differential equation (1)

Step4: As R.H.S. is zero, equate to zero the coefficients of different powers of x, particularly x” in
most cases to find a recurrence relation between the coefficients.

Step5: Substitute the values of a,, a;, a,, as in (2) to get the required solution.

Example81Find the power series solution about x = 0 for the differential equation:



_y2)3Y 5 W _
(1 x)dx2 2x—+2y =0
2
Solution: Given (1 — xz)d—i - Zxd—y +2y =0 ..(D

Let the solution of equation (1) be givenasy = X2, a,x” = ay + a,;x + a,x? + -

O

Differentiating (2) with respect to x, = = %2, a,rx" ! .. (3)
Again differentiating @ with respect to x, — = X2, a,r(r — )x" 2 .. (@)

Substituting values of y, — and from (2), 3 and @ in equation (1)

=51 -x)[X2,a,r(r— l)xr‘z] —2x[2%  a,rx" ] + 2[X% 0a,x"] =0
Sy ar(r—1Dx" 2 =X ja,r(r—Dx" —2X2 ja,rx" +2X2% a,x" =0
Sy, arr—Dx"2 =Y alr*—r+2r-2]x"=0

=22, arr—Dx"?2-Y%alr?+r-2]x"=0 .5

Equating to zero the coefficient of x"in equation (5)

2 a,,0r+2)r+1)—-a@G?+r—-2)=0

N (r2+4r-2) _ (r+2)(r-1) _ (r-1)
Y42 = e T e T T e &
= Arpy = D, .. (6) is the required recurrence relation

&
Puttingr = 0in (6), a, = —a,
Puttingr = 1in (6), a; =0

: . 1 1
Puttingr =2in(6), a, =3a, = —24ao N—

: . 1
Putting 7 = 3 in (6), a5=5a3=0 waz; =0

: . 3 3( 1 1 1
Puttingr = 4in (6), aq :Ea4:§(_§a0):_ga0 @y = —2a

Similarly, all the coefficients can be found using the recurrence relation (6)

Substituting the values of a,, as, a,, as, ... in equation (2)
=y =a,+ a,x + (—ag)x? + (—%) x* + (—%) x® 4

S>y=aqx+a, (1 — X —T- ) is the required series solution of equation (1).

2.14 Legendre’s Equation
Another important differential equation used in problems showing spherical symmetry is Legendre’s

2
equation given by (1 — x?) % — Zx% +nn+1)y =0...... @
Here n is a real number, though in most practical applications only non-negative integral values are

required. Solving equation O about the point x = 0, which is an ordinary point



Let the solution of equation (1) be given as
y=22,a,x" =ay,+ax +ax%+-ax" + - .2

Differentiating (2) with respect to x, Z—z =Y. arx" ! .3
2
Again differentiating (3) with respect to x, d—z =X*ar(r—1x"2.0%

Substituting values of y, — and 4%y from (2), (3) and () in equation (1)

>0 -x)X2,a,r(r — 1)xr‘2] —2x[X2 arx™ ]+ n(n+ DX ,a,x"] =0
=Sy ar(r—Dx" 2 =Y ar—Dx" —2X2 a,rx" +n(n+ 1) X2 ,a.x" =0
S>Xar(r—Dx"2 =¥ alr?—r+2r—n(n+1D]x" =0

>3, arr—Dx"?2=-Y2alr?+r—-nn+1D]x"=0 ..(5

Equating to zero the coefficient of x"in equation (5)

a4, +2)0r+1)—a.G?+r—-n(n+1) =0

= Arpy = % ~ ... (6) is the required recurrence relation

Puttingr = 0in (6), a, = %ao

Puttingr = 1in (6), a; = Z_n(6n+1) a, = —(n—13)!(n+2) a,

Puttingr = 2in (8), a, = 6—n1(121+1) a, = —(n—i)z(n+3) (—n(121+1)) ay = (n—2)n(1:—1)(n+3) g
Putting r = 3in @’ ag = 12—1;E)n+1) a5 = —(n—?;z)(n+4) (—(n—13)!(n+2)) a, = (n—3)(n—1)5(!n+2)(n+4) a,

-(n-1)(n+2) a

.a3= 3l

Similarly, all the coefficients can be found using the recurrence relation (6)

Substituting the values of a,, as, a,, as, ... in equation (2)

nn+1) n-1)(n+2) (n-2)n(n+1)(n+3)
y=ao+ax—— aoxz—T x3+ ” apx* +
(n—3)(n—1)5(ln+2)(n+4) a1x5 4o
=y = a, [1 _ n(n+1)x2 n (n-2)n(n+1)(n+3) Xt — ] n
2! 4!

a |x - (DD 3 | (DO 5

equation given in (1)

] is the required series solution of Legendre’s

- Series solution of Din terms of Legendre’s function P,(x) and Q,,(x) is given by

y = agh(x) + a; @, (),
Here P, (x) is called Legendre polynomial and Q,,(x) is called Legendre function of 2™ kind.



Results: (i) P,(1) =1 (ii) P,(-1) = (-1)*

2.14. 1 Recurrence Relations of Legendre’s Function P, (x)
1 (n+ 1P, ,(x) = 2n+1DxP,(x) —nP,_,(x)

Proof: From generating function (1 — 2xz + 22)7E = Xe o 2P (x)..... D
Differentiating both sides of D partially with respect to z, we get
—% (1—2xz+ zz)_%(—Zx +22) = X% onz" 1P, (x)
>(x—2z)1-2xz+ zz)_%_1 =2 ,nz" 1P, (x)
= (x—2)(1—2xz + 22)72 = (1 — 2xz + 72) Y onz™ 1P, (x)
= (x—2) 2% z"P,(x) = (1 — 2xz + z%) X% ynz" 1P, (x) using®
Equating coefficient of z" on both sides
xP,(x) = Pp_1(x) = (n + VP, (x) = 2xnP,(x) + (n — 1)P,_; (x)

= n+ 1P, (x) = 2n+ 1x P,(x) —nP,_,(x)
2 P,(x)=P,.,(x)—2xP;,(x)+P,_,(x)

Differentiating both sides of @ partially with respect to x, we get
—i (1—-2xz+ zz)_l_%(—Zz) =2 02" Pi(x)
=z(1 —2xz + ZZ)_% =1 -2xz+2z%) 2% ,z" P (x)
= z2% 0 z"P,(x) = (1 — 2xz + z2) X¥_, z™ P (x) using @
Equating coefficient of z"*! on both sides
P,(x) =P, (x)—2xP,(x) +P,_;(x)
B) nP,(x) =xP,(x) —P;_;(x)
Differentiating recurrence relation (1) partially with respect to x, we get
m+ 1P, ()= 2n+1)xP,(x) + (2n+ 1)B,(x) —nP,_,(x)....D
Also from recurrence relation (2)
P ..(x)=P,(x)+2xP,(x)—P,_,(x) ...... ®

Using @ in ), we get
(n+ D[P, (x) +2xP,(x) —P,_;(x)] = 2n+ 1) x P,(x) + 2n + 1)P,(x) — nP,_,(x)
= nP,(x) = xP,(x) — P;_,(x)
4) (m+1P,(x) =P, ,(x)— xP;(x)
Adding recurrence relations (2) and (3), we get
(n+ 1)P,(x) =P,,,(x) — xP,(x)
G) 2n+1)P,(x) =P, (x)—P,_,(x)
Adding recurrence relations (3) and (4), we get
2n+ 1P, (x) =P ., (x) =P _;(x)
6 1-x*)P,(x)=n[P,_;(x)—xP,(x)]
Replacing n by (n — 1) in recurrence relation (4)

nP,_,(x) =P, (x) —xP,_,(x) ...... @
Also multiplying recurrence relation (3) by x



nxP,(x) = x?P,(x) —xP;_;(x) ....... ®

Subtracting ® from @

(1-x?)P(x) =nlP,_;(x) —xP,(x)]
7 A-x»)P,(x)=m+1)[xP,(x) — P, (x)]
Replacing n by (n + 1) in recurrence relation (3)

=>n+ 1P, (x) =xP ., (x) —P.(x) ...... ®

Also multiplying recurrence relation (4) by x

(n+ DxP,(x) = xP,,,(x) — x?P;(x) ........ @
Subtracting (6) from @), we get

(1-x2)P(x)=mn+1) [xP,(x) — Py (x)]

2.14.2 Rodrigue’s Formula
Rodrigue’s formula is helpful in producing Legendre’s polynomials of various orders and is given by

P,(x) = Wd_n( x? —1)"
Proof: Lety = (x2 — 1)"

dy n-1 _ (x2-1)"
—= =n(x?—-1)"12x = an—( P
>y,(x2—=1)—-2nxy =0, y; = dy ......... @)

Differentiating @ (n + 1) times using Leibnitz’s theorem:

(n+1) n

= yn+2(x - 1) + (Tl + 1)yn+1(2 ) + Yn(z) - zn[Yn+1(x) + (n + 1)yn(1)] =0
= yn+2(x - 1) + 2xyn+1 - (Tl + n)yn - 0

= (1= x)Yps2 — 2XYpsr +n(n+ 1Dy, =0 ......... ®

2

Putting y;, = V , so that y,,,, = Z—: and y,.,, = dd_x

<

@=1-x) -2 +nm+ 1V =0
which is Legendre’s equation with the solution V = AP,(x) + BQ,,(x)
ButsinceV =y, = (ic—nn (x? — 1)™ contains only positive powers of x, solution can only be a constant
multiple of P,(x).
=~ P,(x) = CV = Cy,
=C @D @
=co"(x - DM+ D" = D"
=CD™(x — D)™(x + 1)"]
=C[D™(x — D™ (x + ™ + ne, D™ 1(x — ™n(x + D"+ -+ (x — D™D (x + 1)"]
=Cln!(x+ D"+n.n(n—1)..32.(x — Dnlx + D" 1 + - + (x — 1)"n!]

Taking x = 1 on both sides
=>1=Cn!2"+0 -~P(1)=1



Using ® in @), we get
P,(x) = ——( Z_1n

2Mn! dx™

Puttingn = 0, Py(x) =1

Puttingn =1, P,(x) =- %(x2 -1l = §2x =x

Putting n = 2, P,(x) = x2—1)2 = %(sz - 1)
Puttingn = 3, P;(x) = E(Sx — 3x)

Putting n = 4, P,(x) = %(35354 —30x2 + 3)

Putting n = 5, Ps(x) = §(63x5 — 70x3 + 15x) etc. ..

Example82 Expand the following functions in series of Legendre’s polynomials.
(i) (1 + 2x — x?)
(i) (x3 = 5x2 + x + 1)
Solution: 1 = Py(x), x = P,(x),
P,(x) = %(33(2 —1) = x?%= §(2P2(x) +1) = §(2P2(x) + Py(x))
P;(x) = %(53(3 —3x) >x3 = %(2P3(x) + 3x) = §(2P3(x) +3P,(x))
(i) LetE =(1+2x —x?)
Substituting values of 1, x and x? in terms of Legendre’s polynomials, we get
E = (P +2P, () 1 (28,00 + Py ()
= 2 (3Py(0) + 6P, (x) — 2P, (x) — Py (x))

= 2(Po(x) + 3P, (x) - P, ()
(i) LetF = (x3—5x2+x+1)
Substituting values of 1, x, x? and x3in terms of Legendre’s polynomials, we get

F=[2@P,0) +37,() (2P0 + () + P, () + Py()]
Example83 Prove that

(l) P (1) — Tl('l’l+1)

_ (n+1) n(n+1)

(i) P.(—-1) = ( 1) -

Solution: B, (x) is the solution of Legendre’s equation given by:
dy
(1—x)dz 2x +n(n+1)y—0 ....... @

222l dx 2(

~y = P,(x) will satisfy equation @O
= (1 —x?)P/(x) = 2x Pi(x) + n(n + 1)P,(x) =0 ....... @

Putting x = 1 in @ we get
—2P(1) +n(n + 1)P,(1) =0
S p(1) =20 o p (1) =1

Putting x = —1 in @ we get



2P, (—1) + n(n + 1)P(-1) =0
> Py (-1 = - "C2p (-1
_ ( 1)(n+1) n(n+1)

2.15 Bessel’s Equation

v P, (=1) = (=D

The differential equation x? == + x + (x2—n?)y =0...... @

1s known as Bessel’s equation of order n and its solutions are called Bessel’s functions.

Note that x = 0 is a regular singular point of Bessel’s equation.

Series solution of @ in terms of Bessel’s functions J,(x) and j_, (x) is given by
y =Al,(x) + BJ_,,(x)
where J,(x) = X2 ,(-1) ——

(x)n+2r
r! I"(n+r+1)

x —n+2r
Jon(0) = 2201 75 (3)
Proposition If n is any integer then J_,,(x) = (=1)"/,,(x)
Proof: Case I: n is a positive integer

—-n+2r
Jon () = ZiLo(=1)" m (—)
If nis a positive integer, values of r from 0 to (n — 1) will give gamma function of - ve
in the denominator, which being infinite all such terms will vanish.

) _ v 1 (x —-n+2r
”]_n(x) - ( ) rI (- n+r+1)( )
Puttingr =n+ k , we get

Jon(x) = 25 o (— 1)k 1 ({)n”k

(n+k)! T(k+1) \2

X

= (D" oD o G
= (=D"n(x)

Casell:n =0

Joo() = (=1)° Jo(x)

or Jo(x) = J,(x) , which is true

Case Ill: n is a negative integer

Let = —p , where p is a positive integer

Fromcase | J,(x) = (-1)7?J_,(x) =J_,(x) = (-1)"],(x)

2.15.1 Expansions of Jo(x) , J;(x) , Ji(x) and J 1(x)

)n+2k

We have J,(x) = X2 ,(-1)" (g)n+2r L

r!T'(n+r+1)

- 2\ 2T 1 o 2\2T 1
L )00 = 22,17 () s = 2217 (3) o

« I'(r+ 1 = r! when r is a positive integer

=)o) =1-755 (2)2 + (zT)z (2)4 + (;)2 (2)6 + o
2. J1(x) = Lo (=1)" (g) - =% reo(=1D)" (g)zr 1

r! T(r+2) 2 r! (r+1)!

“T'(r+2=(r+ 1)! whenris a positive integer

integers



= J1(0) =21 _ﬁ(g) RTEY ( ) +ﬁ(§)6 + ]

3. ]%(X) = Qr=o(— l)r( )%+2T [(1r+ )

[(n+1=nln
e e
B ERRPTEER 2531y 312531 o B
3 22 222 2222
x [2 2x2  2x*  2x5
on bl 3 T st 7
x 2[x x3 x5 X7 2
_ __[___ ¥ _x . ] = |Zsinx
2m x L1 3! 5! 7! n
1
- 1

- Bl O -0 e

(n+1=nln
- 0 - ]
-

R P x6 >
— 1[1__+__—+ ] ~ cosx
X | X

2.15.2 Recurrence Relations of Bessel’s Function

) @ =2 ®  or [ xY,  (Ddx = x,(x)

o . n+2r 1
Proof: ]n(x) Zr 0( 1) ( ) r!T(n+r+1)
n ( ) T 2n+2r 1
= X ]n X) = ( 1) 20420 I T(n4r+1)
i , B - B - 2(n+r)x2n+2r 1 1
= T [x ]n(X)] = r:g( 1) on+2r r! (n+r)f(n+r)

ST+1+1) = (0 +DM(n+71)
(n-1)+2r
mo(-17 (3) 1

=X ]n—l(x)
(2) X)) = =X Y1 () OF [ Xy (6) dix = — =[x, (2)]
Proof: J,(x) = X52(—1)" (f)nm

) - %27
= X n]n(x) = r=0(_1)r on+2r

1
r!T(n+r+1)
1
r!T(n+r+1)




dr _n _ Yoo [, qyr2rxt 1
= dx[x ]n(x)]_ r=1( 1) 20%2r (r—1)! r I(n+r+1)

_ x_n ;20_1(_1)1" (E)n+2r—1 1
- 2

(r-1)! I'(n+r+1)
= " Ep (-1 (

x\(M+1)+2k 1
) k! T((n+1)+k+1)
Putting r =k + 1

2

= =X 1 (x)
3)  Ja'(0) = Jo1 () = S (x)
Proof: From recurrence relation (1)
=[x (2] = X ()
= x", (x) + nx"" 1, (x) = x"J,_,(x)
Dividing by x™, we get

Jn G + 7 Jp () = Jper ()
= Jn' () = Jao1 () = ZJn (%)
@ JaG) = T (D + ()
Proof: From recurrence relation (2)
= [ ()] = =% pa (0)

= x7, (0 —nx () = —x T (%)
Dividing by x™", we get

]1’1(x) = _]n+1(x) + g]n(x)

I ACIEET) MINCIEY M€Y)

Proof: Adding recurrence relations (3) and (4), we get
J2 () = 21 () = Jaa 0]

6) 2nJ,(x) = x[J,_1(x) + Jpy1 ()]
Proof: Subtracting recurrence relations (3) from (4), we get

250G = Jnea (0 + Ja ()
= 2n),(x) = x[J,_1 () + ], (0]

2.13 Previous Years Solved Questions

Q1. Solve y(2xy + e*)dx — e*dy = 0
(Q1(g), GGSIPU, December 2012)
Solution: M = y(2xy +e*), N = —e*

oM N

— = 4x e, —= —e*
oy y + ' ox

oM

aN : : : .
3y #+ S, - given differential equation is not exact.

Rearranging the equation as ( ye*dx — e*dy) + 2xy?dx =0 ...

Taking iz as integrating factor, @ may be rewritten as:
y
yeXdx—eXdy
y2
eX
:>d[;]+2xdx=0 ...... @

4+ 2xdx =0



X

Integrating (), solution is given by : 67+ x2=C
= e* +yx? =Cy
Q2. Solve the differential equation:  {(Q8(a), GGSIPU, December 2012)

(x?+y%2+2x)dx + 2ydy =0 ....D

Solution: M = x%+ y%?+2x, N =2y
oM oN

= Y= 0
Z—A; g—: , - given differential equation is not exact.
As @ is neither homogeneous nor of the form yf; (xy)dx + xf,(xy)dy = 0,
~ Computing —M— g—: = 2y
oM _oN
Clearly =—= ay %= 2 1= f(x)say

2y
~IF = eff(x)dx — eJldx — ox

- (D may be rewritten after multiplying by IF as:

e*(x? +y? +2x)dx + 2e*ydy =0....... @
New M = e*(x? +y% + 2x) ,New N = 2e*y

oM aN

— = 2e* — = 2e”*

oy Yo dox y

oM AN ) . . .
™ = oo (2 is an exact differential equation.

Solution of @ is given by:
Je*(x2+y2+2x)dx + [0dy
y constant
= 2+ y?+2x)e* — 2x +2)e* + (2)e* =C
= (x2 +y?)e* = C, Cis an arbitrary constant.

Q3. Solve (xy?+ x)dx + (yx?+y)dy
(Q1(f), GGSIPU, December 2013)

Solution: M = xy2 +x, N=yx?+y
oM _

ay 2xy, = 2xy
oM AN . . L
o = oo given differential equation is exact.

Solution is given by:
Joy? +x)dx + [ydy=¢C
y constant

Q.4 Solve (D2 +D +1)2(D—-2)y=0 (Q1(h),GGSIPU, December 2012)
Solution: Auxiliary equationis: (m? + m+ 1)2(m —2)y =0....... @

Solving @), we get

V3

1 | \/§
> m=2,—--t—i,—-t—
2 2 2 2

C.F.= cie?* + e= [(cy + C3 X) COS ?x + (¢4 + csx) sin?x



Since F(x) = 0, solution is given by y = C.F
>y = e*+ e_Tx[(c2 + ¢3 %) cos?x + (¢4 + csx) sin?x
Q5. Solve (D? — 1)y = coshx cosx

(Q8(b), GGSIPU, December 2012)
Solution: Auxiliary equation is: m? —1 =0

> m==1
CF.= ce*+ c,e™
1
Pl.=— F(x)
f(D)
1 eX+e™X eX+e X
= CcOoS X “ coshx =
D2-1 2 2
1 eX e~ X
== —COSX +—cCOoSXx
D2-1\2 2
eX 1 el 1
= ————C0SX +—————CO0S X
2 (D+1)%2-1 2 (D-1)2-1
eX 1 e ™
= — cosx + Cos x
2 (D2+2D) 2 D2-2D
eX 1 e * .
=———cosx + cos x Putting D? = —1
2 2D-1 2 -2D-1
e¥ 2D+1 e™* 2D—-1
=— CcoS X — CcoSs x
2 4D%2-1 2 4D2%-1

= —%(ZD + 1) cosx +i—0_x(2D —1)cosx Putting D? = —1

X —-X
= —i—o(—z sin x + cos x) +:—O(—2 sinx — cos x)

X —-X
<Pl =% (2sinx — cosx) — —— (2sinx + cos x
10 10

Complete solutionis: y = C.F. +P.I

—-X

e* . e * .
>y = ce¥+ ce +E(251nx—cosx)—T(Zsmx+cosx)

2
Q6. Solve % + 4y = 4tan 2x by the method of variation of parameters.

(Q9(a), GGSIPU, December 2012)
Solution: = (D% + 4)y = 4tan 2x
Aucxiliary equation is: (m? +4) =0
=> m=*x2i
C.F. = ¢ cos 2x + ¢, sin2x = ¢y y; + ¢,

=y, = cos 2x and y, = sin 2x

W = Yyi Y2 | _ | cos2x sin2x | _
iy —2sin2x 2 cos2x
_ _ [yFX) _ _ 4 . _ sin? 2x
U, = f ” dx = 2fstxtaan dx = 2f0052x

_ 2
—2f1 OS2 dx = —2 J(sec 2x — cos 2x) dx

COS 2x

=-2 E log|sec 2x + tan 2x| — %sin Zx]



= [sin 2x — log|sec 2x + tan 2x|]

U, = fylsv(x)dx =§f4tan2xc052x dx = 2fsin2x dx
= —cos 2x
~Pl=uy; +uzy,
= cos 2x [sin 2x — log|sec 2x + tan 2x|] — sin 2x cos 2x
= — cos 2x log|sec 2x + tan 2x|
Complete solutionis: y = C.F. +P.I
= y = ¢; €0s 2X + ¢, sin 2x — cos 2x log|sec 2x + tan 2x|
Q7. Solve the system of equations: % +x =y+et, % +y =x+et

(Q9(b), GGSIPU, December 2012)

Solution: Rewriting given system of differential equations as:

D+Dx—y=et....O

D+1Dy—x=et....2,D= %

Multiplying @ by (D + 1)

>(D+1)*x—D+1)y=D+1)et

(D> +2D+ Dx— (D + 1)y = 2¢%....Q

Adding @ and @), we get

(D? + 2D)x = 3e’ ....... @
which is a linear differential equation in x with constant coefficients.
To solve @ for x, Auxiliary equation is m? + 2m = 0
>m=0,-2
CF.= ¢, +ce™?
Pl = Tlm F(t) =3——
= et Putting D = 1

et

Using ®in @ = Dlc; + c,e ™ ? +et]l +¢; + e ™2t + et —y = et

= —2c,e” %t tet+c+ et —y=0

(® and (® give the required solution.

3x

Q8. Solve by method of variation of parametersy " — 6y ' + 9y = ex—z
(Q8(a), GGSIPU, December 2013),{Q3(b), GGSIPU, 2" term 2014)
Solution: Auxiliary equation is: m? —6m+9 =0

(m—3)2=0

> m=3,3



C.F.= (¢, +cx)e3* = e + cyx e3 =1y, + &),

~y, =e3*andy, = xe3*

3 3
A LA 0 I L s
Yi Y2 3e3* 3xe3* 4 3
_ Vo F(x) _ xe3%eg3X _ 1 _
u; = f ” dx = fxzer dx = fxdx— log x
e3xe3x

U, = fy—lsv(x) dx = f

~Pl=wuy; + Uz,

= —e3*logx — e3* = —e3*(1 + logx)

Complete solutionis: y = C.F. +P.l
=y = (c; + cx)e3* —e3*(1 + logx)
a*y
dx?

(Q8(b), GGSIPU, December 2013)

Solution: = (D3+ 2D? + D)y = e?* + sin2x
Auxiliary equation is: m3+2m? + m =0
>mm?+2m+1)=0
>mim+1)2=0
> m=0,-1,-1
CF.=c; + e*(c; + c3%x)

3
Q9. Solve the differential equation: % +2—+ Z—i = e?* + sin 2x

__1 _ 1 2x :
P.l. = ) F(x) = 55 (€7 +sin2x)
_ 1 2x ;
= D3+ 20240 ° D3+ 20240 o1 2x
1 1 . . . .
= —e%¥ sin 2x, putting D = 2 in 15 term, D? = —4 in the 2" term
18 —4D—8+D
1 3D-8 . 1 3D-8
=—e* ————sin2x = —e* — ———sin2x
18 (3D+8)(3D-8) 18 (9D2-64)
1 1 .
= —e** + — (3D — 8)sin 2x
18 100

= — 2 + — (6cos2x — 8sin2x)
18 100
Complete solutionis: y = C.F. +P.I
>y =c+ e ¥(c, + c3x) + 1—1862x + $(6c052x — 8sin2x)
Q10. Solve (D? —2D + 1)y = xe*cosx

(Q8(a), GGSIPU,December 2014)
Solution: Auxiliary equationis: m?> —2m+1 =10

= (m — 1)?

>m=11

C.F.=(c; + cyx)e*

Pl =— F(x) = - xe* cos x
£(D) D2_2D+1
—_ X 1
= X COS X

(D+1)2-2(D+1)+1



= exizx Ccos x
D
= ex%fxcosxdx
=e* % [(x)(sinx) — (1)(=cos x)]

= ex%[xsinx + cos x]

= e*[[ xsinx dx + [ cos x dx]
= e*[[(x) (= cos x) — (1) (= sinx)] + sin x]
~P.l. = e*[—x cos x + 2 sin x]
Complete solutionis: y = C.F. +P.l
=y = (¢ +cx)e* + e*[—xcosx + 2sinx]
QLL. Solve by MOV.P. S% -2+ y = e*logx
(Q8(b), GGSIPU, December 2014)
Solution: Given differential equation may be rewritten as
(D? — 2D + 1)y = e*logx
. Auxiliary equation is: m? —2m+1 =0
= (m — 1)2
>m=1,1

C.F.=(c; + cx)e* =y, + 6y,
~y, =e*andy, = xe*

N }’2|_ e* xe* | _ jox
vy, e xeX+ e*
X X
o[ g _fwdx_ — [ xlogx dx

Jxlogxdx =1 = [(x)(xlogx—x)—(l) (I_x?)]
v [logxdx = xlogx — x

2
=>21=x210gx—x2+x7

2 2
=>1=[xlogxdx = x;logx—x:
x?  x?
U= —logx

Uy = fylF(x)d —f exlogx

dx = [logx dx = xlogx —x

2 2
~P.l= (x: — %logx) e* + (xlog x — x)xe*

=e* (% — xz—zlogx + x%logx — xz)

-2 (logn-2)

Complete solution is: y = C.F. +P.I

2 3
=y = (¢ +cx)e* +x7ex(logx—z)



Q12.Solve (D —1)*(D +1)* =sin®>+e* +x

(Q1(a), GGSIPU,December 2015)
Solution: Auxiliary equation is: (m — 1)?(m+ 1)2 =0
>m=11-1,-1
C.F. =(c; +cx)e* + (c3 +cux)e™

1 1 X
PlL=——F(x) =———(sin?=+e* + x
f(D) (D-1)(D+1))? ( 2 )
1 1 1
— 1 — x
T 2D%- 2D2+1( cosx) + D*-2D%+1 € D4—2D2+1x
11 o1 1 1L 1
2D*-2D2%2+1 2D*-2D2+1 cosx + D*-2D2+1 e” D*-2D2+1 x
1t Lox_1 i _
Now 2D4 571 © > »putting D =0
1 1 .
Also :——— cos x = ~cos x putting D? = —1
2D*-2D2+1 8
1 X — 1 X — 1 1
Again ———— e* = x_———e* as f(1) = 0, acase of failure 2 times

2

— 2 1 x X" x - _
=X, e =5 ¢ putting D =1

1 1
X =
D*-2D2+1 1+(D*-2D?)

And x=[1+{D*-2D)]x =x

1 1 x2
~Pl==-—=cosx+=e*+x
2 8 8

Complete solutionis: y = C.F. +P.

2
=y = (¢ +czx)ex + (c3 +c4x)e_x—lcosx+% e* +x+%

Q.13 Solve x? 4x &y _+ 6y = x*sinx
<Q3(b), GGSIPU,December 2015)
Solution: This is a Cauchy’s linear equation with variable coefficients.
Putting x = et - logx =t
:»x——Dy, —D(D—l)y
=~ Equation may be rewritten as
(D(D—1) —4D + 6)y = e** sinet
= (D?* —5D + 6)y = e*sinet, D = %
Aucxiliary equation is: m?> —5m+6 =0
>m-2)m-3)=0

> m=23
C.F.= ce® +ce3 =cx?+c,x3 wel=x
1 .
P.I. ——F(x)— e*t sinet
F(D) —5D+6
1 .
= et sine!
(D+4)2-5(D+4)+6
1 . 1 .
— ptt sinet = et t

= e ——sIne
D2+3D+2 (D+1)(D+2)



1 1 . 1, 1,
= et [— - ] sin ef= e4t [—sm et — sin et]
(D+1) (D+2) (D+1) (D+2)

=e*[e7t [etsinet dt — e 2t [ et sinet dt]

v —F(t) = e~ [ e F(t)dt

" (D+a)

et (—coset) — e ?t(—et cos et + sinef]

Solving the two integrals by putting et = u, . etdt = du

=e

s~ P.I=—e?'sinet= —x?sinx
Complete solutionis: y = C.F. +P.l

>y = ¢;x% + cx3 — x?%sinx



