Chapter 3: Series Solutions and Special Functions

3.1 Introduction
2
Consider the linear differential equation % — 8% + 15y = 0, whose solution is given by

_ 3 S5x _ (3x)" (5x)" C . . .
y = e’ + et =¢ Z;’QLOT + ¢, Z;’QLOT , Which is a series solution.

Some differential equations with variable coefficients cannot be solved by usual methods, and we
need to employ series solution method to find their solutions in terms of infinite convergent series.

3.1.1 Power Series

An infinite series of the form Yo_,a,(x —x,)" = ag + a;(x — x) + ay(x — x5)% + -+, is
called a power series about the point x,; a,, a,, a, ... are arbitrary constants. The point x = x, is
called center of the power series. The power series about the origin (x, = 0), is called standard
power series and is given as: Yoo, a,x™ = ag + a;x + azx? + - a,x™ + -

3.1.3 Series Solutions
Consider a second order linear differential equation: P(x) Z% + Q(x) Z—i’ +R(x)y =0..(D)
where P(x), Q(x) and R(x) are functions of x or constants.
Ordinary and Singular Points
I.  The point x = x, is called an ordinary point of equation (1), if P(x,) # 0
Il.  The point x = x, is called a singular point of equation (1), if P(x,) = 0
a) Ifboth lim (x — xo) Q( ) and )}LI)ICIO(X — X,)? % are finite, then the point x = x,, is called

X—=Xq
a regular singular pomt of equation (1).
b) If either or both of lim (x — x¢) 5= Q( ) and lim (x — xg)? == R

X-Xg X—Xg P(x)

x = x, is called an irregular smgular point of equation (1).

are non-finite, then the point

Note: Series solution does not exist if x = x, is an irregular singular point of a differential
equation.

Examplel Find the ordinary points, regular singular, and irregular singular points of the
differential equation x2(x — 1)(x — 2) + (@ -1 Z+2xy =0

Solution: Given xz(x—l)(x—Z) +( —1)—+2xy =0..(D

Comparing with the differential equation P(x) d—x); + Q(x) d—z +R(X)y =0

P(x) =x%(x— 1(x—2),Q(x) = (x — 1) and R(x) = 2x,

Now for x, to be an ordinary point, P(x,) # 0

=>x2(x—1D(x—-2)#0 =x, € R—{0,1,2}

- all real numbers except 0, 1 and 2 are ordinary points of differential equation (1)
Again, for singular points P(x,) = 0
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ie, x?(x—1)(x—2) =0 = x, € {0,1,2}
~. 0,1 and 2 are singular points of differential equation (1)

)xz(x(icl_)l(zc—z) = om 2
x—0 x(x—2)

Now lim(x — 0
x—0

=x = 0 is an irregular singular point of the differential equation (1)

Again, lim(x -1) z(x;l) — lim "2 = 0 i.e., finite
x2(x-1)(x-2) x—>1x%(x—2)
And lim(x — 12 2 im2 = o | j.e., finite

x2(x—1)(x— 2) x—>1 x(x—-2)

=x = 1is a regular singular point of the differential equation (1)

Also, lim (x — 2) % = hrg = % i.e.. finite
e = lin
2x i 2(x=2)

And hm(x — 2)? =0, ie., finite

X2(x-1)@-2)  x-2 x(x-1)

=x = 2 is a regular singular point of the differential equation (1)

3.1.3.1 Algorithm to find series solution when x = 0 is an ordinary point of equation (1),
i.e., P(0)#0

Step1: Assume the solution of equation (D asy = 32, a,x" = ay + a;x + a,x? + -+ ...(2)

2
Step2: Differentiate (2) with respect to x to find the values of Z—z and %

2
Step3: Substitute the values of y, Z—i and ZTZ in the differential equation (1)

Step4: As R.H.S. is zero, equate to zero the coefficients of different powers of x, particularly x”
in most cases to find a recurrence relation between the coefficients.

Step5: Substitute the values of a,, a;, a,, as in (2) to get the required solution.
Example2 Find the power series solution about x = 0 for the differential equation:

¥y, Ay _
(1—x )dx2 Zxdx+2y =0
G 2y, _
Solution: Given (1 —x*) == —2x > +2y =0 (D
Let the solution of equation (1) be given as y = Z?‘;o a,x" =ay+ a;x + ax? + - ...(2)
Differentiating (2) with respect to x, Zr ca,rx™ L3

Again differentiating @ with respect to x, — = Y2, a,r(r — Dx"2 ... (3)

Substituting values of y, = and from (2),(3) and @ in equation (1)

=1 - x)[ELar(r - 1)xr 2] — 2x[X a4 2[E 0 arxT] = 0
=YL ar(r = D" = par(r — Dx” =250 arxT + 22X 0 ax" =0
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Sy, ar(r—Dx" =Y a.[r?—r+2r—2]x"=0
=>Y2,arr—Dx" 2 =Y a[r?+r-2]x"=0 ..(5
Equating to zero the coefficient of x™in equation (5)

Sa,.,T+2)r+1)—a@?+r—-2)=0

(r?2+4r-2) _ (r+2)(r-1) _ (-1
= Aryz = (r+2)(r+1) ar = r+2)r+1) T @+1) T
(r-1) 1)

= Apyy = .. (6) is the required recurrence relation

en T
Puttingr = 0in (6), a, = —a,
Puttingr = 1in (6), a; =

: . 1 1
Puttingr = 2in (6), a, = 3% = —3 00 v, = —a,

. . 1
Putting 7 = 3 in (6), a5=5a3=0 caz; =0

. . 3 3( 1 1 1
Putting r = 4 in (6), a, =Ea4=5(_§a0)=_§a0 ¥y = —3do

Similarly, all the coefficients can be found using the recurrence relation (6)

Substituting the values of a,, as, a,, as, ... in equation (2)
=y =a,+a,x + (—ag)x? + (—%) x* + (—%) x® 4

=>y=aqx+a, (1 —x?—=- —= - ) is the required series solution of equation (1).

3.2 Legendre’s Equation
Another important differential equation used in problems showing spherical symmetry is

Legendre’s equation given by (1 — xz)i 2x + nn+1)y =0...... @
Here n is a real number, though in most practical appllcatlons only non-negative integral values
are required. Solving equation @ about the point x = 0, which is an ordinary point
Let the solution of equation (1) be given as
y=220a,Xx" = ag+ a;x + ax* + ---arxr + (2
Differentiating (2) with respect to x, ZT arx™ L3

Again differentiating @ with respectto x, —= = ¥, a,r(r — Dx" 2 ... ()

Substituting values of y, = and from (2),(3) and @ in equation (1)

= (1 - xz)[Zr Zarr(r - 1)xr 2] - Zx[Zr 1arrxr 1] + n(n + 1)[Zr 0 arX ] =0
Sy, ar(r—Dx" 2 =Y2 va,r(r—Dx" —2Y 2 a,rx" +n(n+ 1) X 2oax" =0
Sy, ar(r—Dx"?=Y2a.[r?—r+2r—n(n+1D]x" =0

=>¥2 arr—-Dx" 2 =Y a.[r’+r—-nn+1D]x"=0 ..
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Equating to zero the coefficient of x™in equation (5)

2a,,,0+2)r+1) —a@?+r-nn+1) =0

DAy, = %ar ... (6) is the required recurrence relation
Puttingr = 0in (6), a, = _n(:'ﬂ) a,
Puttingr = 1in (6), az = %’mal = _("+)l("+2)
Puttingr — 2in @’ a, = 6—Tl1(;L+1) a, = —(n—i)z(n+3) (—n(:+1)) ay = (n—2)n(r;—:—1)(n+3) .
__ —n(n+1)
2 =5 Qo
. . 12-n(n+1) -(n-3)(n+4) [(—(n—-1)(n+2) n-3)(n-1)(n+2)(n+4)
Puttingr = 3 in @, s =—— ~— a3 = ” ( 3! )a1 = o |
_ —(-)(n+2)

T3 = 3! 1

Similarly, all the coefficients can be found using the recurrence relation (6)

Substituting the values of a,, as, a,, as, ... in equation (2)

y=a,+ax— n(n+1) aoxz _ (n-1)(n+2) a1x3 + (n—Z)n(r:—l)(n+3) a0x4 n
(n—3)(n—1i(|n+2)(n+4) xS 4 oo
oy =a [1 _In(rz—l)xz N (n—z)n(r;+1)(n+3) L ] N
a, [x — (n_ll(ln+2)x3 + (n_3)(n_1)5('n+2)(n+4) x5 — ] is the required series solution of

Legendre’s equation given in (1)
~. Series solution of Din terms of Legendre’s function P,(x) and Q,(x) is given by

y = aoh(x) + a; 0, (x),
Here P,(x) is called Legendre polynomial and Q,,(x) is called Legendre function of 2™¢ kind.
Results: (i) P,(1) =1 (ii) P,(—1) = (D"

3.2.1 Recurrence Relations of Legendre’s Function P,,(x)
(1) (n+ 1Py (x) = 2n+ Dx Pp(x) — nPp_q(x)
1
Proof: From generating function (1 —2xz +z%)" 2 = Yo, z"P,(x)...... @
Differentiating both sides of D partially with respect to z, we get
3
—% (1 —2xz+2z%)2(—2x +22) = X onz" 1P, (x)
1
>x—2)1=-2xz+2%)72" =3¥% ,nz""1P,(x)
1
= (x—2)1—-2xz+2z)2=0-2xz+2z*) Y5 onz""1P,(x)
= (x—2) X% z"P,(x) = (1 — 2xz + z2) X% ynz" 1P, (x) using®
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Equating coefficient of z" on both sides
xPn(x) - Pn—l(x) =+ 1)Pn+1(x) - anpn(x) + (n— 1)Pn—1(x)
=> N+ 1P (x) = 2n+ 1x Py(x) —nPp_;(x)
(2)  Pp(x) =Pp(x) —2xPy(x) + P4 (x)

Differentiating both sides of @ partially with respect to x, we get
—% (1= 2xz + 22) "1 "2(=22) = ¥, 2" (%)
= 2(1 — 2xz 4+ 22) 72 = (1 — 2%z + 22) 5%, 2" P (%)
=zY0 ,z"P,(x) = (1 —2xz + z?) ¥, z" P (x) using D
Equating coefficient of z"** on both sides
P,(x) = Ppyq(x) — 2x Py (%) + Py (%)
@)  nPu(x) = xPp(x) — P,_1 (%)
Differentiating recurrence relation (1) partially with respect to x, we get
m+ 1P, (x) = 2n+ 1) xP,(x) + 2n+ 1)P,(x) —nP,_,(x)....D
Also from recurrence relation (2)
Pr1(x) =P, (x)+2xPy(x) —Pr_;(x) ...... ®

Using @ in ), we get
(n+ D[B,(x) + 2x Py(x) = P,_1(x)] = 2n+ 1) x P(x) + 2n + 1)B,(x) — nP,_,(x)
= nh(x) = xP (x) — P_; (x)
(4) (m+1)P,(x) =Py (x) — xPp(x)
Adding recurrence relations (2) and (3), we get
(n+ DB (x) = Ppyy (x) — xP (%)
(5) @n+ 1DP,(x) =Py (x) — Pp_q(x)
Adding recurrence relations (3) and (4), we get
(2n+ DB (x) =Py () = Py ()
6) (1—x*)Py(x) =n[Py_1(x) — xP,(x)]
Replacing n by (n — 1) in recurrence relation (4)

nP,_1(x) =Py(x) —xP,_;(x) ...... )

Also multiplying recurrence relation (3) by x
nxP,(x) = x?P,(x) —xP,_;(x) ....... ®
Subtracting ® from @

(1 —x?) Py(x) = n [Pp_1(x) — xP, (x)]
(1) A =2 Py(x) = n+1) [xPy(x) = Ppyq(2)]
Replacing n by (n + 1) in recurrence relation (3)

Also multiplying recurrence relation (4) by x
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(n+ 1)xP,(x) = xP; 1 (x) — x?*P(x) ........ @
Subtracting (6) from (@, we get
(1 —=x?) Py(x) = (n+ 1) [xP, (%) — Ppy1(x)]

3.2.2 Rodrigue’s Formula
Rodrigue’s formula is helpful in producing Legendre’s polynomials of various orders and is given

dn
by P (X) W dx—n(xz — 1)”
Proof: Lety = (x? — 1)®
LAy n—-1 (x2-1)"
== n(x? — 1" 12x = 2nx——+ 1)
=>y,(x?—1)—-2nxy =0, yl_dy ......... @

Differentiating @ (n + 1) times using Leibnitz’s theorem:

= Y2 (02 = 1)+ (n + Dy, (2x) + Y (2) = 2n[yp () + (n+ Dy, (D] =0
= yn+2(x - 1) + nyn+1 - (Tl + n).Vn - O

(n+1) n

= (1= x)Yps2 — 2XYp tn(n+ 1y, =0......... ®
. av azv

Putting y,, = V', so that y,,q = —and yn,, = —

®= (1- )“l v 2x3—z+n(n+ DV =0

which is Legendre’s equation with the solution V = AP, (x) + BQ,(x)

But since V =y, = ic—nn(xz — 1)™ contains only positive powers of x, solution can only be a
constant multiple of P, (x).
“B(x) =CV =Cy,
4n

=C(* =" @

= CD™[(x — D"(x + D" - =Dn

=CD™[(x — D)™"(x + )]

=C[D™(x — D"(x + )" + nc, D" 1 (x — D)™n(x + D" 1+ -+ (x — D™D (x + 1)"|

=C[n!(x+ D" +n.nn—-1)..32.(x— Dnlx+ 1" 1 + -+ (x — 1)"n!]

Taking x = 1 on both sides

=>1=Cn!2"+0 ~B,(1)=1

=>C = ﬁ ......... ®
Using ® in @ we get
P (X) = F ) (x - 1)”

Puttingn =0, Py(x) =1
Puttingn =1, P;(x) = % d%(xz -1l = %Zx =x

Page | 6



2 2 _1 2 _
Puttingn = 2, P,(x) = 222[ dx2 ( -1 =7 (3x% —1)
Puttingn = 3, P;(x) = E(Sx — 3x)
Putting n = 4, P,(x) = %(35x4 —30x2 + 3)

Putting n = 5, Ps(x) = §(63x5 — 70x3 + 15%) etc...
Example2 Expand the following functions in series of Legendre’s polynomials.
(i) (1 + 2x — x?)
(i) (x® = 5x2 +x + 1)
Solution: 1 =Py(x), x = P;(x),
P,(x) == (3x% — 1) = x2 = 2(2P,(x) + 1) = 2 (2P, (x) + Py (x))
P;(x) = 2(5x3 = 3x) = x3 = §(2p3(x) +3x) = §(2p3(x) +3P,(x))
(i) LetE =1+ 2x—x2)
Substituting values of 1, x and x? in terms of Legendre’s polynomials, we get
E= (P + 2P, (0) — 2 (2P,(0) + Py()) )
=~ (3Py(x) + 6P, (x) — 2P, (x) — Po(x))
= 2(Py(x) + 3P, (x) — P,(x))
(ii) Let F = (x> —5x>+x+ 1)
Substituting values of 1, x, x2 and x3in terms of Legendre’s polynomials, we get
F = [2(2P;(x) + 3P, () = (2P,(x) + Po(x)) + P, (x) + Py(x)]
=2Py(x) = TPy (x) + 2 P, () — 2 Po(x)
Example3 Prove that
() P() ="
_ (n+1) n(n+1) n(n+1)
i) Bi(-D) = (-1 ;
Solution: B, (x) is the solutlon of Legendre’s equation given by:
(1—x)dz 2x +n(n+1)y—0 ....... @
~y = P,(x) will satlsfy equation @
= (1—x*P/(x) = 2xP,(x) + n(n+ DB, (x) =0 ....... @
Putting x = 1 in @ we get
—2P!(1) + n(n + 1)P,(1) =0
S P(1) =2 o p () =1
Putting x = —1 in @ we get
2P (1) + n(n + DP(-1) =0
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nn+1)

= Py(—1) = —
— (_1)(n+1)
3.3 Bessel’s Equation

Pn(_]-)
n(n+1)
2

The differential equation x? + x + (x? —

IS known as Bessel’s equation of order n and its solutions are called Bessel’s functions.
Note that x = 0 is a regular singular point of Bessel’s equation.

Series solution of @ in terms of Bessel’s functions J,(x) and J_,, (x) is given by

y = AJ,(x) + B]_,,(x)
where J,(x) = Y2 ,(=1D)"

(x)n+2r
r! I"(n+r+1)

X\~

n+2r
Jon(x) = XiZo(—1 )rm(—)
Proposition If n is any integer then J_,,(x) = (—1)"/,(x)

Proof: Case I: n is a positive integer
x)—n+2r

Jon() = 5o~ s

Pn(_l) = (_1)n

If n is a positive integer, values of r from 0 to (n — 1) will give gamma function of -ve

integers in the denominator, which being infinite all such terms will vanish.

.X') —-n+2r

Jon00) = (1) i

Puttingr =n + k , we get
Jon () = Bp (1) — e (2

(n+k)! T(k+1) \2

n+2k
= (=1)" Xk=o(— DF k'F(111+k+1 (ch)
= (D" ()
Casell:n=0
Joo(x) = (_1)0]0(35)
or Jo(x) = Jo(x), which is true
Case Ill: n is a negative integer
Let = —p , where p is a positive integer

)n+2k

From case | ]p(x) = (_1)_p]—p(x) =>]—n(x) = (_1)n]n(x)
3.3.1 Expansions of Jo(x) , J1(x) , Ji(x) and J 1(x)

1

W have J,0) = 57217 ()"

= Jo) =1-22(2) + (%) +

r!TC(n+r+1)

1. Jo(x) = T3o(-1)" (E)ZTr.mﬂ) = 71" (3) )

« I'(r+ 1 = r! when r is a positive integer

302 \2
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2. 1) = X2o(—1)" (E)mrr,w) 3200 () o

r! (r+1)!
“ T'(r+ 2= (r+ 1)! when ris a positive integer
X 1 X 2 1 X 4 1 X 6
= J1(x) =E[1_H(E) +35:G) +55 ) +]
+2r

3. 1) = Eo(- 1) (E)% s

- Elp e e O - @ -

1 7531
2 2222
(n+1=nln
2 4 6
x |1 1 X 1 X 1 x 1
o C B
] TR (2) 21331\, 312531 4, 2
2 22 222 2222
x [2 2x%2  2x*  2x®
= [E -2y
2T ! 3! 5! 7!

4. ] 100 = (=17 G)_%m T

aﬂ%ﬁ@”ﬁ@“mﬁ+1

2 x2  x* x® 2
= —1——+———+---]= —CoS X
X 2! 4! 6! X

3.3.2 Recurrence Relations of Bessel’s Function

(D) —Yu@] = 2 g (x)  Or

fxn]n—l(x)dx = xn]n(x)
Proof: /() = Zeze(-1" () ot

r!TC(n+r+1)
n o TxZ n+2r 1
= X ]n(x) = Zr=0( ) 202 I [(n+r+1)
d 2(n+r)x2n+2r 1 1
= a[xn]n(x)] = Yrmo(—1)" on+2r

r! (n+r)f(n+r)

“Tln+r+1)=m+r)I(n+r)
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f) (n—=1)+2r 1
2

= " Zo(-1)" (
= x"Jp_1(x)

() Sl = =21 () OF [ XY (%) dx = — =[x, (%)]
x n+2r
Proof: J,,(x) = X7Lo(—1)" (E) 7l F(n1+r+1)
> X7 = T20(-1) S rres
2rx21‘—1 1

1
i -n — [ee) _ T
= dx [x ]n(x)] - Zr:l( 1) 2n+2r  (r—1)! rI'(n+r+1)

rIf((n—-1)+r+1)

e N f n+2r—1 1

=X Zr:l( 1) (2) (r-1)! T(n+r+1)
(n+1)+2k

— __a—n Y\ _1\k (X 1

= —x7" Yp=o(—1) (z) k! T((n+1)+k+1)

Putting r=k + 1
= =X pn1(x)
B)  Ju'(®) =Ju1(®) = ZJn(x)
Proof: From recurrence relation (1)
=[x ()] = X" (2)

= X", (%) + nx™ 1, (0) = x™, (%)
Dividing by x™, we get

JaG) + = Jn(x) = Jpa ()
= ' () = Jnoa (6 = ZJn (%)
@) Ja) = 1 () + )0 (%)
Proof: From recurrence relation (2)
=[x (0] = =20 (2)

= x_n]n,(x) - nx_n_ljn(x) = _x_n]n+1(x)
Dividing by x™", we get

Ja() = ~Jn1 () + =) (x)

6)  Ju(® =3 Unca () — Jus1 (0]

Proof: Adding recurrence relations (3) and (4), we get
Jn ) = 2ot () = Jaa (0]

6)  2nJ,(x) = x[Jn-1(x) + Jn41(X)]

Proof: Subtracting recurrence relations (3) from (4), we get
2= Jn(0) = Jooa () + Jpa ()
= 20/, (%) = x[Jn-1(x) + Jn+1 ()]
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